Ayudantía N°1 de Variable Compleja (MAT-235)

Profesor: Eduardo Cerpa Ayudante: Patricio Guzmán

(1) Sea $n \in \mathbb{N}$ tal que $n \geq 2$. Pruebe las siguientes identidades.

$$\cos\left(\frac{2\pi}{n}\right) + \cos\left(\frac{4\pi}{n}\right) + \dots + \cos\left[\frac{2\pi(n-1)}{n}\right] = -1,$$

$$\sin\left(\frac{2\pi}{n}\right) + \sin\left(\frac{4\pi}{n}\right) + \dots + \sin\left[\frac{2\pi(n-1)}{n}\right] = 0.$$

(2) Sea $n \in \mathbb{N}$ tal que $n \geq 2$. Justifique que

$$\sin\left(\frac{\pi}{n}\right)\cdot\sin\left(\frac{2\pi}{n}\right)\cdot\ldots\cdot\sin\left[\frac{(n-1)\pi}{n}\right] = \frac{n}{2^{n-1}}.$$

- (3) (i) Sea $z \in \mathbb{C}$. Pruebe que $1+z+z^2+\ldots=1/(1-z)$ si |z|<1.
 - (ii) Sea $\alpha \in \mathbb{R}$ tal que $|\alpha| < 1$ y $\theta \in \mathbb{R}$. Demuestre que se cumplen

$$1 + \alpha \cos(\theta) + \alpha^2 \cos(2\theta) + \dots = \frac{1 - \alpha \cos(\theta)}{1 - 2\alpha \cos(\theta) + \alpha^2},$$
$$\alpha \sin(\theta) + \alpha^2 \sin(2\theta) + \dots = \frac{\alpha \sin(\theta)}{1 - 2\alpha \cos(\theta) + \alpha^2}.$$

- (4) Demuestre lo que sigue.
 - (i) $\Omega \subset \mathbb{C}$ es un conjunto cerrado si y solo si $\overline{\Omega} = \Omega$.
 - (ii) $\Omega \subset \mathbb{C}$ es un conjunto cerrado si y solo si toda sucesión convergente de elementos de Ω tiene su límite en Ω .
- (5) Determine $\lim_{x \to 2i} \frac{z 2i}{z^4 16}$
- (6) Estudie la continuidad en C de las siguientes funciones.
 - (i) $f(z) = z/(z^2 + 1)$.
 - (ii) $g(z) = (z^2 + 1)/(z i)$ cuando $z \neq i$ y g(z) = 3i cuando z = i.
- (7) Pruebe que $f: \Omega \subseteq \mathbb{C} \to \mathbb{C}$ es continua en $z_0 \in \Omega$ si y solo si $\lim_{n \to \infty} f(z_n) = f(z_0)$ para toda sucesión $(z_n)_{n \in \mathbb{N}} \subset \Omega$ tal que $\lim_{n \to \infty} z_n = z_0$.