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Abstract— This paper presents a backstepping control design
for a one-dimensional wave PDE with in-domain viscous damp-
ing, subject to a dynamical anti-damped boundary condition.
Its main contribution is the design of an observer-based control
law which stabilizes the wave PDE velocity, using only boundary
mesurements. Numerical simulations on an oil-inspired example
show the relevance of our result and illustrate the merits of this
control design.

I. INTRODUCTION
A large class of physical systems exhibits mechanical

vibrations, which may induce stress and material fatigue.
This is the case, e.g., for drilling facilities which suffer of
angular velocity oscillations due to the downhole interaction
with the rock (the so-called stick-slip phenomenon). Repeti-
tive exposure to this phenomenon substantially decreases the
productivity and sometimes leads to premature failure.

Usually, these dynamical phenomena are modeled as wave
PDEs. Current studies on this topic may be classified in
three types. First, some of them focus on the propagation
phenomenon as [12], where a wave PDE with in-domain
anti-damping and Dirichlet boundary is considered. Another
trend of studies pays specific attention to the boundary
conditions, e.g [13], where a pure wave PDE with an anti-
stable boundary condition is considered. Here, we consider
both dynamics and thus follow a third type approach.

The system under study is a one-dimensionnal wave PDE
with in-domain viscous damping. The uncontrolled boundary
is a second order anti-damped dynamics. For physical mat-
ters, as for the drilling application, only boundary velocity
measurements are considered available for control. While
several output feedback laws exist in the nominal case
without in-domain damping [9], [1], [5], up to our knowl-
edge, there exists only one design accounting for distributed
viscous damping in [10]. However, this solution, which
grounds on the backstepping methodology [6], is a full state
feedback and requires a previous change of variables: the
ODE and PDE are then decoupled, but only after performing
a not straightforwardly invertible change of variables (spacial
derivation of the state). Consequently, the obtained stability
result is expressed in terms of space derivatives of the state.
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In this paper, we aim at extending our approach in [8]
which proved the robustness of the control law developed in
[1], to small enough in-domain damping. This is consistent
with the fact that this control we consider was originally
designed for a pure wave PDE. The mains contributions of
this paper are

• the development of a control law taking into account
in-domain damping in a more explicit way than in [10]
and generalizing the design of [1];

• the design of an observer using only boundary velocities
measurements.

The paper is organized as follows. In Section II, we present
the problem under consideration. Section III is devoted to
the full state control design, while Section IV details the
proof of convergence. Finally, an observer based control law
is presented in Section V. We conclude with simulations
illustrating our result on an oil-inspired drilling application
in Section VI, and directions of future works.

Notation In this paper, | · | is the Euclidean norm and
‖u(·)‖ is the spatial L2-norm of a function [0,1] 3 x 7→ u(x, ·).
Moreover a.e.

= stands for equal almost everywhere.
For a function (x,y) 7→ k(x,y), k′(x,x) is used to denote

the total derivative of k(x,y) evaluated at (x,x), i.e.,

k′(x,x) =
∂k(x,y)

∂x

∣∣∣∣
(x,x)

+
∂k(x,y)

∂y

∣∣∣∣
(x,x)

(1)

II. PROBLEM STATEMENT

Let us consider the following wave equation with in-
domain viscous damping, subject to an anti-damping bound-
ary, with actuation on the opposite boundary

utt(x, t) = uxx(x, t)−2λut(x, t) (2)
ux(1, t) =U(t) (3)
utt(0, t) = aqut(0, t)+aux(0, t) (4)

in which U(t) is the scalar control input, (u,ut) is the system
state, with

(
u(·,0),ut(·,0)

)
∈ H1(0,1)×L2(0,1), a > 0 is a

scalar constant. The in-domain viscous damping coefficient is
λ > 0. The anti-damping coefficient is q> 0. The parameters
a, λ and q are supposed to be known constant values. The
control objective is to stabilize the system velocity (i.e., ‖ut‖)
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and torque (i.e., ‖ux‖)1. Let us define the desired attractor

A =

{
(u,ut) ∈ H1(0,1)×L2(0,1)∣∣ut(·)

a.e.
= 0, u(·) a.e.

= C, C ∈ R
}

(5)

Our objective is to stabilize the system (2)-(4) towards the
attractor A .

Assumption 1: The only measured quantities are the ve-
locity boundaries, i.e., ut(0, t) and ut(1, t).
This assumption will be used for the observer based control.

III. BACKSTEPPING STATE FEEDBACK

First the full-state feedback is presented. We consider in
this section that the whole state is available from measure-
ment, and in particular ut(·, t) and ux(·, t). The backstepping
approach is used to design a control law able to stabilize
system (2)-(4) towards the attractor A defined in (5). The
objective is to find a control law U(t) that matches (2)-(4)
into

wtt(x, t) = wxx(x, t)−2λwt(x, t) (6)
wx(1, t) =−wt(1, t) (7)
wtt(0, t) =−awqwwt(0, t)+awwx(0, t) (8)

referred to as the Target system, which, assuming aw > 0
and qw > 0, is exponentially stable (see Section IV-A). The
desired control law U(t) is chosen as

U(t) =−ut(1, t)+
1

(m(1,1)−1)

[∫ 1

0

(
my(1,y)− sx(1,y)

+2λ (s(1,y)−gy(1,y))+gxy(1,y)
)
ut(y, t)dy

+
∫ 1

0
(sy(1,y)−gyy(1,y)−mx(1,y))ux(y, t)dy

(m(1,0)+aqg(1,0)+gx(1,0))ut(0, t)
]

(9)

where s, m, and g are the kernels of the backstepping trans-
formation displayed later (see (24)), and explicitly defined
as  s(x,y)

m(x,y)
g(x,y)

= eH(y−x)F (10)

in which

F =
1

aw

−(aq+aw qw)
aw−a

0

 (11)

H =

0 aq+2λ aq(aq+2λ )
0 a a2q+2aλ

1 0 a

 (12)

It is worth noticing that 1− m(1,1) = a
aw

and cannot
be zero since a > 0 here. Thus, the control law is always
well defined. Computation of the control law requires the
knowledge of ux(·, t), ut(·, t) and the velocity boundaries

1Note that these denominations (velocity and torque) are abusive, as the
system is normalized and so variables do not have unit

ut(0, t) and ut(1, t). Note that the derivatives of s(x,y),
m(x,y), and g(x,y) can be computed explicitly with (10).

Theorem 1: Consider the closed-loop system consisting
of the plant (2)-(4), together with the control law (9)-(12) in
which aw > 0 and qw > 0 . Define the functional

Γ(u,ut) = ut(0, t)2 +
∫ 1

0
ut(x, t)2dx+

∫ 1

0
ux(x, t)2dx (13)

Then there exist ρ > 0 and R such that, for all t > 0

Γ(u,ut)6 RΓ
(
u(.,0),ut(.,0)

)
e−ρt (14)

and therefore the closed-loop system for the the attractor A
defined in (5) is exponentially stable.

For the case λ = 0, using the fact that a pure wave
equation can be reformulated as two transport phenomena,
one recovers the predictive control in [1] taking aside the
adaptive part.

The control law (9) has a structure similar to the one
proposed in [10] and thus requires knowledge of the same
variables. Exact comparison of both controllers is a direction
of future work as one cannot conclude, at a first glance at
least, if they result in the same control law. Nevertheless,
the design approach proposed here is more straightforward
-we are considering another target system which does not
require a preliminary change of variables- and the stability
result (Theorem 1) is obtained with a more meaningful norm.
Indeed the result from [10] is expressed in terms of ux(., t),
uxx(., t), utx(., t) and ut(0, t).

IV. PROOF OF THEOREM 1

The proof of Theorem 1 is performed in three steps: first,
the stability of the target system (see Lemma 1 in Section
IV-A); second, the mapping between the original system and
the target (Lemma 2 in Section IV-B), and the computation
of the control law (see Section IV-B.5); finally, the stability
in terms of the functional Γ in Section IV-C.

A. Stability of the target system

Since we are interested in the stabilization of the dis-
tributed velocity and torque, the Lyapunov functional is
chosen as a function of wx and wt .

Lemma 1: Consider the system (6)-(8) and the following
Lyapunov function candidate

V (w,wt) =
1
2

∫ 1

0
(w2

x +w2
t )dx+

1
2aw

wt(0, t)2

+δ

∫ 1

0
(1+ x)wxwtdx (15)

in which 0< δ < 1
2 . The function (15) is positive definite with

respect to the attractor A (i.e. wt(., t), wx(., t), and wt(0, t)).
Moreover

V̇ (w,wt)6−min
(

δ

4
, 2awqw +δaw

)
V (w,wt) (16)

if
 δ < min

(
8λ

64λ 2−1 ,
1
2

)
, for λ > 1

8

δ < 1
2 , otherwise

(17)
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Proof: Using Young’s inequality and integrations by
parts on the time derivative of (15), one gets

V̇ (w,wt)6−(1−2δ )wt(1, t)2−2λ

∫ 1

0
w2

t dx

−qwwt(0, t)2− δ

2
(wt(0, t)2 +wx(0, t)2)

− δ

2

∫ 1

0
(w2

t +w2
x)dx+2δλ

∫ 1

0

(
w2

x

ε
+ εw2

t

)
dx (18)

in which ε > 0. Assuming that

δ <
1
2
, ε > 8λ , ε 6= 1 (19)

δ 6
8λ

ε2−1
if ε > 1 (20)

δ > 0 if ε < 1 (21)

then

V̇ (w,wt)6−
δ

4

∫ 1

0
w2

t −
δ

4

∫ 1

0
w2

x

−
(

qw +
δ

2

)
wt(0, t)2 (22)

One obtains, from (15), that

V (w,wt)6
∫ 1

0
(w2

x +w2
t )dx+

1
2aw

wt(0, t)2 (23)

Matching the last two inequalities, this concludes the proof
of Lemma 1.

B. Backstepping transformation

Let us start this section by stating the following result.
The remaining part of this section is devoted to its proof.

Lemma 2: The backstepping transformation

w(x, t) = u(x, t)−
∫ x

0
s(x,y)ut(y, t)dy

−
∫ x

0
m(x,y)ux(y, t)dy−

∫ x

0
g(x,y)uxt(y, t)dy (24)

in which s(x,y), m(x,y), and g(x,y) have been defined in
(10)-(12), along with the control law (9) maps system (2)-
(4) into system (6)-(8).

One may be surprised by the form of this transformation,
as the last integral in (24) adds only boundary terms. Indeed,
using an integration by parts, one can rewrite the last integral
as an integral term of ut(y, t) and boundary terms, ut(0, t) and
ut(x, t). However, the existence and uniqueness of the kernel
are more easily proven under this from. This idea of adding
integral term was used in [13] with a third-order kernel in
u, ut , and ux. Here, it is applied together with a third-order
kernel but in ux, ut , and uxt . It is worth noting that one may
also choose to add an integral term in u in (24). However, due
to the specific form of our target system, the corresponding
kernel would be found equal to zero.

1) Computation of backstepping derivatives: To prove
the existence of the kernel, the time derivative of (24) is
computed, using integrations by parts and expressing utt(·, t)
along with (2)

wt(x, t) = ut(x, t)+2λ

∫ x

0
s(x,y)ut(y, t)dy− [s(x,y)ux(y, t)]

x
y=0

+
∫ x

0
sy(x,y)ux(y, t)dy−

∫ x

0
my(x,y)uxt(y, t)dy

− [g(x,y)uxx(y, t)−gy(x,y)ux(y, t)]xy=0−
∫ x

0
gyy(x,y)ux(y, t)dy

+2λ

∫ x

0
g(x,y)uxt(y, t)dy (25)

Similarly, one obtains the second order time derivative
wtt(x, t) = uxx−2λut(x, t)+2λ

[
s(x,y)ux(y, t)

]x
y=0

−2λ

∫ x

0
sy(x,y)ux(y, t)dy−4λ

2
∫ x

0
s(x,y)ut(y, t)dy

−
[
s(x,y)uxt(y, t)− sy(x,y)ut(y, t)

]x
0−

∫ x

0
syy(x,y)ut(y, t)dy

− [m(x,y)uxx(y, t)−my(x,y)ux(y, t)]xy=0−
∫ x

0
myy(x,y)ux(y, t)dy

+2λ

∫ x

0
m(x,y)uxt(y, t)dy− [g(x,y)uxxt(y, t)−gy(x,y)uxt(y, t)]x0

−
∫ x

0
gyy(x,y)uxt(y, t)dy+2λ [g(x,y)uxx(y, t)−gy(x,y)ux(y, t)]x0

+2λ

∫ x

0
gyy(x,y)ux(y, t)dy−4λ

2
∫ x

0
g(x,y)uxt(y, t)dy (26)

Now, the first order space derivative of (24) can be computed
as

wx(x, t) = ux(x, t)− s(x,x)ut(x, t)−
∫ x

0
sx(x,y)ut(y, t)dy

−m(x,x)ux(x, t)−
∫ x

0
mx(x,y)ux(y, t)dy

−g(x,x)uxt(x, t)−
∫ x

0
gx(x,y)uxt(y, t)dy (27)

and finally the second order space derivative of (24) is

wxx(x, t) = uxx(x, t)

− s(x,x)uxt(x, t)− (s′(x,x)+ sx(x,x))ut(x, t)−
∫ x

0
sxx(x,y)ut(y, t)dy

−m(x,x)uxx(x, t)− (m′(x,x)+mx(x,x))ux(x, t)

−
∫ x

0
mxx(x,y)ux(y, t)dy−g(x,x)uxxt(x, t)

− (g′(x,x)+gx(x,x))uxt(x, t)−
∫ x

0
gxx(x,y)uxt(y, t)dy (28)

2) Kernel equations: As the considered backstepping
transformation relies on Volterra integrals, we standardly
solve the kernel equations on a triangle, i.e., x ∈ [0,1], y ∈
[0,x]. The propagation phenomenon (6) fixes diagonal terms
(e.g. s(x,x)), vertical terms (e.g. s(x,0)) and surface terms
(e.g. s(x,y)). Moreover, the uncontrolled boundary fixes
point-wise terms (e.g. s(0,0)). The control boundary fixes
the control law. From (25)-(28), the propagation phenomenon
(6) is verified if the following conditions are respected2

• Kernel surface terms (x,y)∫
ut(y, t)dy : syy(x,y) = sxx(x,y) (29)∫
ux(y, t)dy : myy(x,y) = mxx(x,y) (30)∫
uxt(y, t)dy : gyy(x,y) = gxx(x,y) (31)

2the nomenclature used here is ”factory term” ” : ” ”condition”
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• Kernel diagonal terms (x,x)
ut(x, t) : sy(x,x) =−s′(x,x)− sx(x,x) (32)
ux(x, t) : my(x,x) =−mx(x,x)−m′(x,x) (33)
uxt(x, t) : gy(x,x) =−gx(x,x)−g′(x,x) (34)

• Kernel vertical terms (x,0)
ut(0, t) : sy(x,0) = (aq+2λ )m(x,0)

+aq(aq+2λ )g(x,0) (35)
ux(0, t) : my(x,0) = am(x,0)+a(aq+2λ )g(x,0) (36)
uxt(0, t) : s(x,0)−gy(x,0)+ag(x,0) = 0 (37)

• Kernel point-wise terms (0,0): To inspect these terms,
note that the boundary condition (8) needs also to be
verified. First one can get the following equation by
expressing (24), (25), (26) and (27) for x = 0, and
using the uncontrolled boundary condition of the initial
system (4)

wtt(0, t) = aqut(0, t)+aux(0, t) (38)
wt(0, t) = ut(0, t) (39)
wx(0, t) = ux(0, t)− s(0,0)ut(0, t)

−m(0,0)ux(0, t)−g(0,0)uxt(0, t). (40)

Then for the boundary condition (8) of the target system
to be respected, one obtains the following conditions

ut(0, t) : aw s(0,0) =−(aq+aw qw) (41)
ux(0, t) : aw m(0,0) = (aw−a) (42)
utx(0, t) : g(0,0) = 0 (43)

3) Vector reformulation and explicit solving of the kernel
equation: By denoting

S(x,y) =

 s(x,y)
m(x,y)
g(x,y)

 (44)

one can reformulate (32)-(37), and (41)-(43) as

Sxx(x,y) = Syy(x,y) (45)
S(x,x) = F (46)

Sy(x,0) = HS(x,0) (47)

in which F and H have been introduced in (11) and (12).
As (45) is a pure wave equation, using Riemann invariants,
there exist S+ and S− such that

S(x,y) = S+(x+ y)+S−(x− y) (48)

by expressing it for y = x and using (46), one gets

S(x,x) = S+(2x)+S−(0) = F (49)

and concludes that S+(x) is constant, so there exists S̃(x−y)
such that S(x,y) = S̃(x− y) (50)

and from (46)-(47), for all x ∈ [0,1],
S̃′(x) =−HS̃(x) (51)

S̃(0) = F (52)

which is a Cauchy problem. This proves the existence and
uniqueness of the kernel. From (50)-(52) one can find (10).

4) Inversibility of the backstepping transformation: Let
us consider the map Π(u(x, t),ut(x, t)) = (w(x, t),wt(x, t))
with U(t) defined in (9). Π is the map that transforms the
original system (2)-(4) into the target system (6)-(8). The
existence of the inverse map Π−1 can be obtained by simply
replacing a with aw and q with qw in the previous analysis.
One gets the inversibility of the backstepping transformation
straightforwardly.

5) Full state feedback control computation: We wish to
show that the control law fixed by the boundary condition (7)
and the backstepping transformation (24) can be expressed
as (9). First, let us compute wx(1, t) and wt(1, t). Using
integrations by parts on (27), and also (46), one obtains

wx(1, t) = (1−m(1,1))ux(1, t)− (gx(1,1)+ s(1,1))ut(1, t)

+gx(1,0)ut(0, t)+
∫ 1

0
(−sx(1,y)+gxy(1,y))ut(y, t)dy

−
∫ 1

0
mx(1,y)ux(y, t)dy (53)

in which, using (10), gx(1,1)+ s(1,1) = 0. Then, from (25),
using integrations by parts and (37), one can write

wt(1, t) = (1−m(1,1))ut(1, t)

+
∫ 1

0
(2λ s(1,y)+my(1,y)−2λgy(1,y))ut(y, t)dy

+(gy(1,1)− s(1,1)ux(1, t)+(m(1,0)+aqg(1,0))ut(0, t)

+
∫ 1

0
(sy(1,y)−gyy(1,y))ux(y, t)dy (54)

which, using (10), allows to state that gy(1,1)− s(1,1) = 0.
Matching the expression (53) with (54), and using (3), one
reaches the form of the control law (9).

C. Stability in terms of Γ(t)
To conclude on the exponential stability of (2)-(4) along

with the control law (9), the equivalence between V (w,wt)
in (15) and Γ(u,ut) in (13) remains to be proved. From the
backstepping transformation (24), one can write
‖ut‖2 +‖ux‖2 6 α1‖wx‖2 +α2‖wt‖2 +α3wt(0, t)2 (55)

ut(0, t)2 = wt(0, t)2 (56)

in which α1, α3, and α3 are positive constants. Thus, with
(13), one obtains

Γ(u,ut)6 α1‖wx‖+α2‖wt‖+(α3 +1)wt(0, t)2 (57)

Consequently, from (15) and using Lemma 1, there exist
µ1 > 0 and ρ > 0 such that

Γ(u,ut)6 µ1V (w,wt)6 µ1V (w(·,0),wt(·,0))e−ρt (58)

Then, from the inverse backstepping transformation investi-
gated in Section IV-B.4, one can get

‖wt‖2 +‖wx‖2 6 α4‖ux‖2 +α5‖ut‖2 +α6ut(0, t)2 (59)

in which α4, α5, and α6 are positive constants. Therefore,
one obtains the existence of µ2 > 0 such that

V (w,wt)6 µ2Γ(u,ut) (60)

Expressing (60) at time t = 0 and matching it with (58) one
finally reaches (14). This concludes the proof of Theorem 1.
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V. OBSERVER BASED FEEDBACK
To provide a feedback law which can be implemented

using only boundary measurements, we propose here to
associate the full state feedback presented in the previous
section with an observer. The following theorem is the
extension of Theorem 1 in the case of observer-based control.

Theorem 2: Consider the closed-loop system consisting
of the plant (2)-(4), the observer

ûtt(x, t) = ûxx(x, t)−2λ ût(x, t) (61)
ûx(1, t) =U(t)− l1(ut(1, t)− ût(1, t)) (62)
ûtt(0, t) = aqût(0, t)+aûx(0, t)− l2(ut(0, t)− ût(0, t)) (63)

in which l1 > 0 and l2 > aq and the control law

U(t) =−ût(1, t)+
1

(m(1,1)−1)

[∫ 1

0

(
2λ (s(1,y)−gy(1,y))

+my(1,y)− sx(1,y)+gxy(1,y)
)
ût(y, t)dy

+(m(1,0)+aqg(1,0)+gx(1,0))ût(0, t)

+
∫ 1

0
(sy(1,y)−gyy(1,y)−mx(1,y))ûx(y, t)dy

]
(64)

computed with (10)-(12) in which aw > 0 and qw > 0. Define
the functional

Γout(u,ut , û, ût)= ut(0, t)2+
∫ 1

0
ut(x, t)2dx+

∫ 1

0
ux(x, t)2dx

+(ût −ut)
2(0, t)+

∫ 1

0

[
(ût −ut)

2 +(ûx−ux)
2](x, t)dx

(65)

then there exist ρout > 0 and Rout > 0 such that, for all t > 0

Γout(u,ut , û, ût)6 RoutΓout(u,ut , û, ût)

∣∣∣∣
(.,0)

e−ρout t (66)

and therefore the closed-loop system, for the attractor A
defined in (5) is exponentially stable.

Proof: Consider the observation-error ũ(x, t) = u(x, t)−
û(x, t), it can be shown that

ũtt(x, t) = ũxx(x, t)−2λ ũt(x, t) (67)
ũx(1, t) =−l1ũt(1, t) (68)
ũtt(0, t) =−(l2−aq)ũt(0, t)+aũx(0, t). (69)

Following the same steps as in the proof of Lemma 1,
the system (67)-(69) is exponentially stable with respect to
ũx(., t), ũt(., t), and ũt(0, t) if l1 > 0 and l2 > aq. Then using
Lemma 2, we can map the closed loop (2)-(4) with the
control law (64) into the following plant

wtt(x, t) = wxx(x, t)−2λwt(x, t) (70)

wx(1, t) =−wt(1, t)−Ũ(t) (71)
wtt(0, t) =−awqwwt(0, t)+awwx(0, t) (72)

in which Ũ(t) is the difference between (9) and (64).
Following the same computations as the ones given in the
proof of Lemma 1, and using the Lyapunov function (15)
evaluated either for w or considering ũ instead of w, one can
get the existence of ηw > 0 and ηũ > 0 such that, for any
α > 0

V̇ (w,wt)+αV̇ (ũ, ũt)6−ηwV (w,wt)+Ũ(t)2

−αηũV (ũ, ũt) (73)

Symbol Description Value
λ In-domain damping coefficient 0.3
a Uncontrolled boundary coefficient 0.6
q Anti-damping coefficient 0.2

aw Uncontrolled boundary target coefficient a
qw Damping target coefficient q
l1 Observer controlled boundary coefficient 0.01
l2 Observer uncontrolled boundary coefficient 120% aq

Normalized coefficients (without unit) deduced from the physical model in [10] and
[3]. The friction phenomenon used to compute q is described by the model in [14]

TABLE I

in which V (w,wt) is the Lyapunov function defined in (15)
computed for the system (70)-(72) instead of system (6)-(8);
V (ũ, ũt) is the Lyapunov function defined in (15) computed
for the system (67)-(69) instead of system (6)-(8).

Using (9) and (64), applying Young and Cauchy Schwartz
inequalities, there exists ν > 0 such that

Ũ(t)2 6 νV (ũ, ũt) (74)

thus by choosing α < ν

ηũ
, there exists η such that

V̇ (w,wt)+αV̇ (ũ, ũt)6−η
(
Vw(w,wt)+αV (ũ, ũt)

)
(75)

Finally, one can prove the equivalence between V (w,wt)+
αV (ũ, ũt) and Γout(u,ut , û, ût) using similar steps as in Sec-
tion IV-C. This concludes the proof.

Note that the proper estimation of ν in (74) and thus η

in (75) requires the computation of the backstepping kernel,
and according, to Lemma 1, the maximal decreasing rate
cannot be chosen for both the target system (6)-(8) and our
observer (61)-(63).

VI. ILLUSTRATIVE EXAMPLE AND NUMERICAL
SIMULATIONS

A. System definition

The wave equation (2)-(3) is a normalized linearized
model for the stick-slip phenomenon [4] that occurs in
drilling operation (e.g. [1], [2] and [10]). The drillstring
angular oscillations can be modeled by a wave equation
with a nonlinear boundary condition [11], accounting for the
friction between the drillbit and the rock. Phenomenological
expressions of this friction can be found ( [14], [11] and [7]).
Parameter values used in the simulation are given in Table
I.

B. Numerical discretization and eigenvalues computation

First, a semi-discretization in space allows to rewrite the
plant (2)-(4) under the state-space representation Ẋ = AX in
which X =

[
u[1 : n] ut [1 : n]

]T , with A ∈ R2n×2n where n
is the number of spatial points considered. Under this form,
the eigenvalues of the target system (6)-(8), and the closed-
loop system (2)-(4) with the control law (9), have been
computed for n = 30 (see Figure 1). As expected, the control
law efficiently fits the two previous systems eigenvalues
(not perfectly due to numerical errors). One can observe
that there is a couple eigenvalues very close to zero. Th
corresponding eigenvectors are u[i] = C ∈ R and ut [i] = 0
∀i = 1 : n. However, this is still consistent with our result; as
the stability considered in Theorem 1 is towards the set A
defined in (5), the vector space associated to this eigenvector
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Fig. 1. Eigenvalues representation. The maximal relative error is 1.48e−5.
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Fig. 2. Velocity for the full-state feedback. The stettling time -at 5%- for
a reference step from 10 to 5 is about ∆t = 4.6 for ut(0, t) and ∆t = 4.0 for
‖ut‖

does not change the set A . Indeed, we do not try to stabilize
in u but in ux and ut .

C. State-feedback and observer based-control

Simulations have been performed with a tracking objective
of ure f

t . In details, let us consider the corresponding velocity
tracking error ǔt(., t) = ut(., t)−uref

t and the torque tracking
error ǔx(x, t) = ux(x, t)+ (q− 2λx)uref

t , ∀x ∈ [0,1]. One can
obtain that ǔ(., t) is solution of the system (2)-(4), and, apply
Theorem 1 and 2 on ǔ(., t) instead of u(., t), to perform
tracking.

We consider that the system is initially at the equilibrium
corresponding to ure f

t and perform a reference step. The
reference step is switched from ure f

t = 10 to ure f
t = 5 at t = 5.

First, the full state feedback case (i.e. system (3-5) with
the control law (9)), solved in Theorem 1, is illustrated in
Figure 2.

Figures 3 and 4 concern the observer-based control case
(i.e. system (3-5) with the control law (67)), solved in
Theorem 2. The observer starts at t = 2 and the reference
step is switched from ure f

t = 10 to ure f
t = 5 at t = 5. Even

if the transient behavior is different due to the presence of
the observer, the closed-loop system still performs well and,
moreover, the observer is efficient since the estimation errors
converge to zero.

VII. CONCLUSION

An observer based-control law has been designed taking
into account in-domain damping for a wave PDE. However,
the target system and observer have a fixed maximal de-
creasing rate which is not satisfactory. Thus, future works
will aim at finding alternative target plant and observer. In
particular, to alleviate the decreasing rate limitation due to
the in-domain damping, on-going work focuses on a target
system with a different damping coefficient.
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Fig. 3. Observer based-control. The settling time -at 5%- for a reference
step from 10 to 5 is about ∆t = 14.0 for ut(0, t) and ∆t = 13.9 for ‖ut‖
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Fig. 4. Estimation errors. The observer is activated only from t = 2, the
settling times are around ∆t = 11.8 for ‖ũt‖ and ∆t = 11.4 for ‖ũx‖ .
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