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Abstract

This paper presents an output feedback control law for the Korteweg-de Vries equation. The
control design is based on the backstepping method and the introduction of an appropriate ob-
server. The local exponential stability of the closed-loop system is proven. Some numerical
simulations are shown to illustrate this theoretical result.

1 Introduction

The Korteweg-de Vries (KdV) equation was introduced in 1895 to describe approximatively the
behavior of long waves in a water channel of relatively shallow depth. Since then, this equation
has attracted a lot of attention due to fascinating mathematical features and a number of possible
applications.

From a control viewpoint, the KdV system also presents amazing behaviors. Surprisingly, by con-
sidering different boundary actuators on a bounded interval [0, L], we get control results of different
nature. Roughly speaking, the system is exactly controllable when the control acts from the right
endpoint x = L ([18, 6]), and null-controllable when the control acts from the left endpoint x = 0
([9, 10, 2]), whatever the control is Neumann or Dirichlet type.

Due to this kind of phenomena, the control properties of this nonlinear dispersive partial differ-
ential equation have been deeply studied. However, there still are many open questions. See [3], [19],
[15], and the references therein.

In this article we focus on the boundary stabilization problem for the KdV equation with a control
acting on the left Dirichlet boundary condition. The studied system can be written as follows

ut + ux + uxxx + uux = 0,

u(t, 0) = κ(t), ux(t, L) = 0, uxx(t, L) = 0,

u(0, x) = u0(x),

(1)

where κ = κ(t) denotes the boundary control input and u0 = u0(x) is the initial condition. Con-
cerning the stability when no control is applied (κ = 0), it is known that the linear system is
asymptotically stable (see [23, Lemma 3]). We aim here to design an output feedback control in
order to get the exponential stability of the closed-loop system.
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E-mail: eduardo.cerpa@usm.cl

1



Some full state feedback controls have already been designed in the literature for KdV systems.
When the control acts on the right endpoint, we find [5] where a Gramian-based method is applied,
and [7] where some suitable integral transforms are used. In [23], [4] and [14], the authors use the
backstepping method to design feedback controllers acting on the left endpoint of the interval.

However, in most cases, we have no access to measure the full state of the system. Thus, it is
more realistic to design an output feedback control, i.e., a feedback law depending only on some
partial measurements of the state.

For autonomous linear finite-dimensional systems, the separation principle holds. Thus, stabiliz-
ability and observability assumptions are sufficient to ensure the stability of the closed-loop system.
In other words, if there exists a controller, which asymptotically stabilizes the origin of the system
and an observer which converges asymptotically to the state system, the output feedback built from
this observer and this state feedback asymptotically stabilizes the origin of the system. The case of
autonomous nonlinear finite-dimensional systems depends critically on the structure of the system.
We can only hope having a semi-global result (see e.g [24]). In a PDE framework, this principle, even
for linear systems, is no longer true and the stability of the closed-loop system is not guaranteed.

The basic question to state the problem is which kind of measurements we are going to consider,
being the boundary case the most challenging one. In [14] we consider the linear KdV equation with
boundary conditions

u(t, 0) = κ(t), u(t, L) = 0, ux(t, L) = 0. (2)

In that paper, we see that this system is not observable from the output y(t) = ux(t, 0) for some
values of L. However, we design an output feedback law exponentially stabilizing the system for the
output given by y(t) = uxx(t, L). Thus, we see that the choice of the output is crucial. In [11], the
same controller has been applied to the nonlinear Korteweg-de Vries equation.

In this paper, we will consider the nonlinear KdV equation (1) with measurement

y(t) = u(t, L). (3)

Independently to [14] and to the present paper, Tang and Krstic have developed the same program
for similar linear KdV equations. Full state [23] and output state [22] feedback controls are designed
by using the backstepping method.

This paper is organized as follows. In Section 2, we state our main result. Section 3 is devoted
to recall the feedback control designed in [4]. The observer is built in Section 4. In Section 5,
the well-posedness and the exponential stability of the linear closed-loop controller-observer system
is proven. In Section 6, we prove both the local well-posedness and the exponential stability of
the nonlinear closed loop controller-observer system. Some numerical simulations are presented in
Section 7. Finally, Section 8 states some conclusions.

2 Main result

Based on [13] and [21], we built an observer for (1). More precisely, we define, for some appropriate
function p1(x), the following copy of the plant with a term depending on the observation error

ût + ûx + ûxxx + ûûx + p1(x)[y(t)− û(t, L)] = 0,

û(t, 0) = κ(t), ûx(t, L) = ûxx(t, L) = 0,

û(0, x) = û0(x).

(4)

As mentioned in Section 1, our main result is the local stabilization of the KdV equation by using
the output (3), as stated in the following theorem whose proof is given in Section 6.
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Theorem 1 For any λ > 0, there exist an output feedback law κ(t) := κ(û(t, x)), a function p1 =
p1(x), and two constants C > 0, r > 0 such that for any initial conditions u0, û0 ∈ L2(0, L) satisfying

‖u0‖L2(0,L) ≤ r, ‖û0‖L2(0,L) ≤ r, (5)

the solution of (1)-(3)-(4) satisfies

‖u(t, ·)− û(t, ·)‖L2(0,L) + ‖û(t, ·)‖L2(0,L)

≤ Ce−λt
(
‖u0 − û0‖L2(0,L) + ‖û0‖L2(0,L)

)
, ∀t ≥ 0. (6)

Remark 1 Notice that from this theorem we get the exponential decreasing to 0 of the L2-norm
of the solution u = u(t, x) provided that the L2-norm of the initial conditions of the plant and the
observer are sufficiently small.

3 Control design

The backstepping design applied here is based on the linear part of the equation. Thus, we consider
the control system linearized around the origin

ut + ux + uxxx = 0,

u(t, 0) = κ(t), ux(t, L) = uxx(t, L) = 0,

u(0, x) = u0(x),

(7)

and the linear observer 
ût + ûx + ûxxx + p1(x)[y(t)− û(t, L)] = 0,

û(t, 0) = κ(t), ûx(t, L) = ûxx(t, L) = 0,

û(0, x) = û0(x).

(8)

The standard method of output feedback design follows a three-step strategy. We first design the
full state feedback control. Next, we built the observer. Finally, we prove that plugging the observer
state into the feedback law stabilizes the closed loop system.

In [4] the following Volterra transformation is introduced

w(x) = Π(u(x)) := u(x)−
∫ L

x
k(x, y)u(y)dy. (9)

The function k is chosen such that u = u(t, x), solution of (7) with control

κ(t) =

∫ L

0
k(0, y)u(t, y)dy, (10)

is mapped into the trajectory w = w(t, x), solution of the linear system{
wt + wx + wxxx + λw = 0,

w(t, 0) = wx(t, L) = wxx(t, L) = 0,
(11)

which is exponentially stable for λ > 0, with a decay rate at least equal to λ.
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The kernel function k = k(x, y) is characterized by

kxxx + kyyy + kx + ky = −λk, in T ,
k(x, L) + kyy(x, L) = 0, in [0, L],

k(x, x) = 0, in [0, L],

kx(x, x) =
λ

3
(L− x), in [0, L],

(12)

where T := {(x, y)/x ∈ [0, L], y ∈ [x, L]}. The solution k to (12) exists and belongs to C3(T ). This
is proved in [4, Section VI] by using the method of successive approximations. Unlikely the case of
heat or wave equations, we do not have an explicit solution.

In [4] it is proved that the transformation (9) linking (1) and (11) is invertible, continuous and
with a continuous inverse function. Therefore, the exponential decay for w, solution of (11), implies
the exponential decay for the solution u controlled by (10). Thus, with this method, the following
theorem is proven.

Theorem 2 (see [4]) For any λ > 0, there exists C > 0 such that

‖u(t, ·)‖L2(0,L) ≤ Ce−λt‖u(0, ·)‖L2(0,L), ∀t ≥ 0, (13)

for any solution of (7)-(10).

We give later more details on the observer design. Let us remark that the output feedback law is
designed as

κ(t) :=

∫ L

0
k(0, y)û(t, y)dy, (14)

where û is the solution of (8).
Thus we get the following result, which can be compared to [14]. The proof is given in Section 5.

Theorem 3 For any λ > 0, there exists C > 0 such that for any u0, û0 ∈ L2(0, L), the solution of
(7)-(8)-(14) satisfies ∀t ≥ 0

‖u(t, ·)− û(t, ·)‖L2(0,L) + ‖û(t, ·)‖L2(0,L)

≤ Ce−λt
(
‖u(0, ·)− û(0, ·)‖L2(0,L) + ‖û(0, ·)‖L2(0,L)

)
(15)

Remark 2 Notice that from this theorem, we get the exponential decreasing to 0 of the L2-norm of
the solution u = u(t, x). This result is different from [14], where the initial condition has to be chosen
in H3(0, L). This is due to the fact that the output and the boundary conditions are different.

Remark 3 We see in Section 5 that the well-posedness of this linear closed-loop system directly
follows from the method that we apply.

4 Observer design

The observer (8) is based on a Volterra transformation mapping the solution ũ := u− û, which fulfills
the following PDE 

ũt + ũx + ũxxx − p1(x)[ũ(t, L)] = 0,

ũ(t, 0) = ũx(t, L) = ũxx(t, L) = 0,

ũ(0, x) = u0(x)− û0(x) := ũ0(x),

(16)
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into the solution w̃ of the following PDE
w̃t + w̃x + w̃xxx + λw̃ = 0,

w̃(t, 0) = w̃x(t, L) = w̃xx(t, L) = 0,

w̃(0, x) = w̃0(x).

(17)

We choose the same λ than the one used to design the controller. The transformation is given by

ũ(x) := Πo(w̃(x)) = w̃(x)−
∫ L

x
p(x, y)w̃(y)dy, (18)

where p is a kernel that satisfies a partial differential equation and will be defined in the following.
In [22], a similar observer has been designed. Indeed, if we make the change of coordinates

x̄ = L− x, (19)

then we obtain a Korteweg-de Vries equation similar to the one studied in [22]. Hence, we know from
that paper that the kernel p solves the following equation

pxxx + pyyy + px + py = λp, ∀(x, y) ∈ T ,
p(x, x) = 0, ∀x ∈ [0, L],

px(x, x) =
λ

3
(x− L), ∀x ∈ [0, L],

p(0, y) = 0, ∀y ∈ [0, L].

(20)

The solution p to this equation exists and is unique. It belongs to the set C3(T ). Moreover, once
again following [22], we obtain that

p1(x) = pyy(x, L) + p(x, L). (21)

As in [22], we can state that the transformation Πo is invertible with continuous inverse given by

w̃(x) = Π−1
o (ũ(x)) = ũ(x) +

∫ L

x
m(x, y)ũ(y)dy (22)

where m = m(x, y) is also a C3 solution of an equation like (20) in the triangular domain T .

5 Well-posedness and exponential stability of the linear system

5.1 Preliminaries

Let us focus on the linearized version of the Korteweg-de Vries equation. The homogeneous equation
is given by 

ut + ux + uxxx = 0,

u(t, 0) = ux(t, L) = uxx(t, L) = 0,

u(0, x) = u0(x).

(23)

The operator associated to this linear PDE is given by:

A : D(A) ⊂ L2(0, L)→ L2(0, L),

w 7→ −w′ − w′′′
(24)
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whose domain is D(A) := {w ∈ H3(0, L)
/
w(0) = w′(L) = w′′(L) = 0}. From basic semigroup the-

ory, it is easy to prove that A generates a strongly continuous semigroup of contractions. This semi-
group will be denoted by (W (t))t≥0. We also need some results on the non-homogeneous Korteweg-de
Vries equation.

Theorem 4 (see [12]) Let T > 0. For any u0 ∈ L2(0, L) and any (f, h) ∈ L1(0, T ;L2(0, L)) ×
H

1
3 (0, T ), the following Korteweg-de Vries equation

ut + ux + uxxx = f,

u(t, 0) = h(t),

ux(t, L) = uxx(t, L) = 0,

u(0, x) = u0(x),

(25)

admits a unique solution u ∈ B(T ). Moreover, there exists a positive value C such that the following
inequality holds:

‖u‖B(T ) ≤ C
(
‖u0‖L2(0,L) + ‖f‖L1(0,T ;L2(0,L)) + ‖h‖

H
1
3 (0,T )

)
(26)

From this result, the following lemma can be deduced.

Lemma 1 Let us suppose all the assumptions in Theorem 4 and that in addition f ∈ L2(0, T ;L1(0, L)).
Then, one has the regularity

u ∈ H
1
3 (0, T ;L2(0, L)). (27)

Proof : Note that in particular, u ∈ L2(0, T ;H1(0, L)). Therefore, since ut = −ux − uxxx + f , one
has

ut ∈ L2(0, T ;H−2(0, L)).

Hence,
u ∈ H1(0, T ;H−2(0, L)).

Then, by applying the classical theory of interpolation, it is easy to see that u ∈ H
1
3 (0, T ;L2(0, L)),

which concludes the proof of Lemma 1. 2

Other result we need is the regularity of the right hand side in the observer.

Lemma 2 Let p1 ∈ L2(0, L). Then, given a positive value T , for every u, û ∈ L2(0, T ;H1(0, L)),
one has p1(x)[u(t, L)− û(t, L)] ∈ L2(0, T ;L2(0, L)).

Proof : Using trace theorem, we obtain that there exists a positive value CA such that∫ T

0
|u(t, L)− û(t, L)|2dt ≤ CA

∫ T

0
‖u(t, .)− û(t, .)‖2H1(0,L)dt.

Since u, û ∈ L2(0, T ;H1(0, L)) and p1(x) ∈ L2(0, L), we conclude the proof. 2
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5.2 Proof of Theorem 3 - Well-posedness

The closed-loop system (7)-(8)-(14) through the transformations (9) and (18) can be written as
follows 

ŵt + ŵx + ŵxxx + λŵ = −
{
p1(x)−

∫ L

x
k(x, y)p1(y)dy

}
w̃(t, L),

ŵ(t, 0) = ŵx(t, L) = ŵxx(t, L) = 0,

w̃t + w̃x + w̃xxx + λw̃ = 0,

w̃(t, 0) = w̃x(t, L) = w̃xx(t, L) = 0.

(28)

We only have to prove that system (28) is well-posed (with solutions in B(T )×B(T ) for any T > 0)
and exponentially stable to the origin. In fact, once that is done, by using Lemma 1 we conclude that
w̃, ŵ belong to H

1
3 (0, T ;L2(0, L)). Thus the control defined by (14) belongs to H

1
3 (0, T ), which is

the desired regularity for the input. The existence of solutions and the exponential decay for system
(7)-(8)-(14) is obtained by the invertibility of the transformations (9) and (18).

System (28) is in cascade form. We can apply the linear results to get w̃ and then plug it into
the equation for ŵ as a right hand side by using Theorem 4. Thus, we finally get ŵ.

With these results in hand we can define the continuous solution map

(u0, û0) ∈ L2(0, L)2 7→ Λ(u0, û0) = (u, û) ∈ B(T )2 (29)

where B(T )2 := B(T ) × B(T ) and u, û ∈ B(T ) are the solutions of the linear closed loop system
(7)-(8)-(14).

5.3 Proof of Theorem 3 - Stability

Let us focus now on the exponential stability. To do that, we consider the following Lyapunov
function

V (t) := V1(t) + V2(t) (30)

where

V1(t) = A

∫ L

0
ŵ(t, x)2dx, (31)

and

V2(t) = B

∫ L

0
w̃(t, x)2dx. (32)

The positive values A and B are chosen later. After performing some integrations by parts, we obtain

V̇1(t) ≤
(
−2λ+

D2

A

)
V1(t) +A2L|w̃(t, L)|2, (33)

where

D = max
x∈[0,L]

{
p1(x)−

∫ L

x
k(x, y)p1(y)dy

}
. (34)

We have also
V̇2(t) ≤ −2λV2(t)−B|w̃(t, L)|2. (35)

Therefore, by choosing

A >
D2

2λ
(36)
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and
B ≥ A2L, (37)

we get
V̇ (t) ≤ −2µV (t), (38)

where

µ =

(
λ− D2

2A

)
> 0. (39)

Thus, we obtain the exponential decay of (w̃, ŵ) with a decay rate equals to µ. By using the
invertibility and continuity of the transformations Π and Πo, we conclude the proof of Theorem 3 by
getting the desired exponential decay for (ũ, û).

6 Well-posedness and exponential stability of the nonlinear system

6.1 Preliminaries

The following results are useful.

Lemma 3 (see [18]) Given a positive value T , let u ∈ L2(0, T ;H1(0, L)). Then uux ∈ L1(0, T ;L2(0, L))
and the map u ∈ L2(0, T ;H1(0, L)) 7→ uux ∈ L1(0, T ;L2(0, L)) is continuous. Moreover, there exists
a positive value Ch such that, for every u, ũ ∈ L2(0, T ;H1(0, L))

‖uux − ũũx‖L1(0,T ;L2(0,L)) ≤ Ch‖u+ ũ‖L2(0,T ;H1(0,L))‖u− ũ‖L2(0,T ;H1(0,L)) (40)

Lemma 4 (see [12]) For any positive value T , there exist two positive values C1 := C1(T ) and
C2 := C2(T ) such that

(i) For any z, ẑ ∈ B(T ), ∫ T

0
‖(z(t, .)ẑ(t, .))x‖L2(0,L)dt ≤ C1‖z‖B(T )‖ẑ‖B(T ) (41)

(ii) For f ∈ L1(0, T ;L2(0, L)), let

u =

∫ t

0
W (t− s)f(s)ds,

then

‖u‖B(T ) ≤ C2

∫ T

0
‖f(t, .)‖L2(0,L)dt. (42)

Moreover, one can easily prove the following lemma.

Lemma 5 Given a positive value T , let u ∈ B(T ). Then uux ∈ L2(0, T ;L1(0, L)). Moreover, for
every u ∈ B(T )

‖uux‖L2(0,T ;L1(0,L)) ≤ ‖u‖L2(0,T ;H1(0,L))‖u‖C([0,T ];L2(0,L)) (43)

8



6.2 Proof of Theorem 1 - Well-posedness

We will apply the Banach fixed point theorem in order to prove the well-posedness of the nonlinear
closed-loop system.

With κ defined by (14), and z, ẑ ∈ B(T ), the solutions to
ut + ux + uxxx = −zzx,
u(t, 0) = κ(t),

ux(t, L) = uxx(t, L) = 0,

u(0, x) = u0(x),

(44)

and 
ût + ûx + ûxxx + p1(x)[u(t, L)− û(t, L)] = −ẑẑx,
û(t, 0) = κ(t),

ûx(t, L) = ûxx(t, L) = 0,

û(0, x) = û0(x),

(45)

can be written as follows

(u, û)(t) = Λ(u0, û0)(t)−
(∫ t

0
W (t− s)z(s)zx(s)ds,

∫ t

0
W (t− s)ẑ(s)ẑx(s)ds

)
(46)

where Λ was introduced in (29) and W is the semigroup associated to the linear single equation. We
will be done if we prove that the map Γ defined by the right hand-side of (46),

Γ(z, ẑ) = Λ(u0, û0)−
(∫ t

0
W (t− s)z(s)zx(s)ds,

∫ t

0
W (t− s)ẑ(s)ẑx(s)ds

)
, (47)

has a fixed point.
We define, for some R > 0 to be chosen later,

SR =
{

(z, ẑ) ∈ B(T )× B(T )
/
‖z‖B(T ) + ‖ẑ‖B(T ) ≤ R

}
, (48)

which is a closed convex and bounded subset of B(T )2. Consequently, SR is a complete metric space
in the topology induced by B(T )2. With Theorem 4 and previous lemmas, we have the existence of
a constant C > 0 such that for any (z, ẑ) ∈ SR,

‖Γ(z, ẑ)‖B(T )2 ≤ C
(
‖u0‖L2(0,L) + ‖û0‖L2(0,L)

)
+ C

(
‖z‖2B(T ) + ‖ẑ‖2B(T )

)
.

(49)

We consider r > 0 and u0, û0 ∈ L2(0, L) such that

‖u0‖L2(0,L) ≤ r, and ‖û0‖L2(0,L) ≤ r.

Now we select r,R as follows {
2Cr ≤ R/2,
2CR2 ≤ R/2,

(50)

to obtain that for any (z, ẑ) ∈ SR
‖Γ(z, ẑ)‖B(T )2 ≤ R. (51)
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Thus, with such r and R, Γ maps SR into SR. Moreover, using Lemma 3 and Lemma 4, we obtain

‖Γ(z1, ẑ1)− Γ(z2, ẑ2)‖B2(T )

≤ C2Ch

(
‖z1 + z2‖B(T )‖z1 − z2‖B(T ) + ‖ẑ1 + ẑ2‖B(T )‖ẑ1 − ẑ2‖B(T )

)
(52)

and thus, choosing R such that

2RC2Ch ≤
1

2

we arrive to

‖Γ(z1, ẑ1)− Γ(z2, ẑ2)‖B2(T ) ≤
1

2

(
‖z1 − z2‖B(T ) + ‖ẑ1 − ẑ2‖B(T )

)
(53)

for any (z1, ẑ1), (z2, ẑ2) ∈ SR. By using the Banach fixed-point theorem (see [1, Theorem 5.7]) we
obtain the existence of a unique fixed point of the map Γ. As previously stated, this fixed point is
the solution we are looking for.

6.3 Proof of Theorem 1 - Stability

As we already have solutions, the aim now is to prove the local exponential stability of the nonlinear
closed-loop system 

ut + ux + uxxx + uxu = 0,

u(t, 0) = κ(t), ux(t, L) = uxx(t, L) = 0,

ût + ûx + ûxxx + ûxû+ p1(x)[y(t)− û(t, L)] = 0,

û(t, 0) = κ(t), ûx(t, L) = ûxx(t, L) = 0,

(54)

where

κ(t) =

∫ L

0
k(0, y)û(t, y)dy, (55)

and
y(t) = u(t, L). (56)

As before, we consider the evolution of the couple (ũ, û) where ũ stands for the error ũ = u− û.
Using Πo and its inverse (see (18) and (22)), we define w̃ = Π−1

o (ũ). We denote ŵ = Π(û), where Π
is defined in (9). The inverse Π−1 is given by

û(x) = Π−1(ŵ(x)) = ŵ(x) +

∫ L

x
l(x, y)ŵ(y)dy, (57)

where l solves the following equation

lxxx + lyyy + lx + ly = λl, in T ,
l(x, L) + lyy(x, L) = 0, in [0, L],

l(x, x) = 0, in [0, L],

lx(x, x) =
λ

3
(L− x), in [0, L].

(58)
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The existence of such a kernel l has been proven in [4, see sections IV and VI]. Thus, we can see that
(ũ, û) is mapped into (w̃, ŵ) solution of the coupled target system

ŵt(t, x) + ŵx(t, x) + ŵxxx(t, x) + λŵ(t, x) = −
{
p1(x)−

∫ L

x
k(x, y)p1(y)dy

}
w̃(t, L)

−
(
ŵ(t, x) +

∫ L

x
l(x, y)ŵ(t, y)dy

)
·
(
ŵx(t, x) +

∫ L

x
lx(x, y)ŵ(t, y)dy

)
− 1

2

∫ L

x
|û(t, y)|2ky(x, y)dy, (59)

w̃t(t, x) + w̃x(t, x) + w̃xxx(t, x) + λw̃(t, x) =

−
(
w̃(t, x)−

∫ L

x
p(x, y)w̃(t, y)dy

)
·
(
w̃x(t, x)−

∫ L

x
px(x, y)w̃(t, y)dy

)
−
(
ŵ(t, x) +

∫ L

x
l(x, y)ŵ(t, y)dy

)
·
(
w̃x(t, x)−

∫ L

x
px(x, y)w̃(t, y)dy

)
−
(
w̃(t, x)−

∫ L

x
p(x, y)w̃(t, y)dy

)
·
(
ŵx(t, x) +

∫ L

x
lx(x, y)ŵ(t, y)dy

)
+

∫ L

x

[ |ũ(t, y)|2

2
+ ũ(t, y)û(t, y)

]
my(x, y)dy, (60)

with boundary conditions
ŵ(t, 0) = ŵx(t, L) = ŵxx(t, L) = 0, (61)

w̃(t, 0) = w̃x(t, L) = w̃xx(t, L) = 0. (62)

As in previous section, we will prove the stability of this system by using the same Lyapunov
function (30). We derivate (31) with respect to time as follows

V̇1(t) = 2A

∫ L

0
ŵt(t, x)ŵ(t, x)dx

≤
(
−2λ+

D2

A

)
V1(t) +A2L|w̃(t, L)|2 − 2A

∫ L

0
ŵ(t, x)F (t, x)dx, (63)

where

F (t, x) = ŵ(t, x)ŵx(t, x) + ŵ(t, x)

∫ L

x
lx(x, y)ŵ(t, y)dy + ŵx(t, x)

∫ L

x
l(x, y)ŵ(t, y)dy

+

(∫ L

x
l(x, y)ŵ(t, y)dy

)(∫ L

x
lx(x, y)ŵ(t, y)dy

)
+

1

2

∫ L

x
|û(t, y)|2ky(x, y)dy. (64)

By using the same argument as in [4, 7], we can prove the existence of a positive constant
K1 = K1(‖l‖C1(T ), ‖k‖C1(T )) such that

∣∣∣∣A∫ L

0
ŵ(t, x)F (t, x)dx

∣∣∣∣ ≤ K1

(∫ L

0
|ŵ(t, x)|2dx

) 3
2

. (65)
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Then, we estimate V̇2(t) as follows

V̇2(t) ≤ −2λV2(t)− 2B

∫ L

0
w̃(t, x)G(t, x)dx−B|w̃(t, L)|2 (66)

where G = G(t, x) is the right-hand side of (60). As before, we can prove the existence of a positive
constant K2 = K2(‖l‖C1(T ), ‖p‖C1(T ), ‖m‖C1(T )) such that

∣∣∣∣2B ∫ L

0
w̃(t, x)G(t, x)dx

∣∣∣∣ ≤ K2

(∫ L

0
|ŵ(t, x)|2dx

) 3
2

+K2

(∫ L

0
|w̃(t, x)|2dx

) 3
2

. (67)

Therefore, for A,B, µ satisfying (36)-(37)-(39), we have

V̇ (t) ≤ −2µV (t)+K1

(∫ L

0
|ŵ(t, x)|2dx

) 3
2

+K2

(∫ L

0
|ŵ(t, x)|2dx

) 3
2

+K2

(∫ L

0
|w̃(t, x)|2dx

) 3
2

. (68)

If there exists t0 ≥ 0 such that

‖w̃(t0, .)‖L2(0,L) ≤
µ

K2
(69)

and
‖ŵ(t0, .)‖L2(0,L) ≤

µ

K1 +K2
(70)

we can conclude
V̇ (t) ≤ −µV (t), ∀t ≥ t0. (71)

Thus, we get

‖w̃(t, .)‖L2(0,L) + ‖ŵ(t, .)‖L2(0,L) ≤ e−
µ
2
t
(
‖w̃0‖L2(0,L) + ‖ŵ0‖L2(0,L)

)
, ∀t ≥ 0, (72)

provided that

‖ŵ0‖L2(0,L) ≤
µ

K1 +K2
, ‖w̃0‖L2(0,L) ≤

µ

K2
. (73)

This is the local exponential stability for (w̃, ŵ). As in the linear case, we conclude the proof of
Theorem 1 by going back to the solutions (ũ, û). This is done with the continuous and invertible
transformations Π and Πo. The exponential decay of the system is obtained provided a smallness
condition on the L2-norm of the initial data u0, û0 holds.

7 Numerical simulations

In this section we provide some numerical simulations showing the effectiveness of our control design.
In order to discretize our KdV equation, we use a finite difference scheme inspired from [17]. The
final time for simulations is denoted by Tfinal. We choose (Nx + 1) points to build a uniform spatial
discretization of the interval [0, L] and (Nt + 1) points to build a uniform time discretization of
the interval [0, Tfinal]. Thus, the space step is ∆x = L/Nx and the time step ∆t = Tfinal/Nt. We
approximate the solution with the notation u(t, x) ≈ U ij , where i and j refer to time and space
discrete variables, respectively.

Some used approximations of the derivative are given by

ux(t, x) ≈ ∇−(U ij) =
U ij − U ij−1

∆x
(74)
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or

ux(t, x) ≈ ∇+(U ij) =
U ij+1 − U ij

∆x
. (75)

As in [17], we choose rather the following

ux(t, x) ≈ 1

2
(∇+ +∇−)(U ij) = ∇(U ij). (76)

For the other differentiation operator, we use

uxxx(t, x) ≈ ∇+∇+∇−(U ij) (77)

and

ut(t, x) ≈
U i+1
j − U ij

∆t
. (78)

Let us introduce a matrix notation. Let us consider D−, D+, D ∈ RNx×Nx given by

D− =
1

∆x



1 0 . . . . . . 0

−1 1
. . .

...

0 −1
. . .

. . .
...

...
. . .

. . . 1 0
0 . . . 0 −1 1


, D+ =

1

∆x



−1 1 0 . . . 0

0 −1 1
. . .

...
...

. . .
. . .

. . . 0
... 0 −1 1
0 . . . . . . 0 −1


, (79)

and D = (D+ + D−)/2. Let us define A := D+D+D− + D, and C := A + ∆tId where Id is the
identity matrix. Moreover, we will denote, for each discrete time i,

U i :=
[
U i1 U i2 . . . U iNx+1

]T
the plant state, and

Oi :=
[
Oi1 Oi2 . . . OiNx+1

]T
the observer state. The state output will be denoted by YU and YO stands for the observer output.
The discretized controller gain K and observer gain P , respectively, are defined by

K =
[
K1 K2 . . . KNx+1

]T
and

P =
[
P1 P2 . . . PNx+1

]T
.

We compute them from a successive approximations method (see [4]). Since we have the nonlinearity
uux, we use an iterative fixed point method to solve the nonlinear system

CU i+1 = U i − 1

2
D(U i+1)2.

With Niter = 5, which denotes the number of iterations of the fixed point method, we get good
approximations of the solutions.

Given U0, O0 = 0, K, and P , the following is the structure of the algorithm used in our simula-
tions.
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While i < Nt

• U i+1
1 = Oi+1

1 =
∑Nx

j=1 ∆x
Oij+1Kj+1+OijKj

2

U i+1
Nx

= U i+1
Nx+1 = U i+1

Nx−1, O
i+1
Nx

= Oi+1
Nx+1 = Oi+1

Nx+1;

• YU := U i(Nx + 1), YO := Oi(Nx + 1);

• Setting J(1) = Oi, for all k ∈ {1, . . . , Niter}, solve

J(k + 1) = C−1(Oi − 1

2
D(J(k))2 + P (YU − YO))

Set Oi+1 = J(Niter);

• Setting J̃(1) = U i, for all k ∈ {1, . . . , Niter}, solve

J̃(k + 1) = C−1(U i − 1

2
D(J̃(k))2)

Set U i+1 = J(Niter);

• t = t+ dt;

End

In order to illustrate our theoretical results, we perform some simulations on the domain [0, 2π].
We take Nx = 30, Nt = 167, Tfinal = 10, λ = 2, u0(x) = sin(x) and û0(x) = 0. Figure 1 illustrates
the convergence to the origin of the solution of the closed-loop system (1)-(3)-(4)-(14). Figure 2
illustrates the L2-norm of this solution and the L2-norm of the solution of the observer (4). Finally,
Figure 3 illustrates the logarithmic time evolution of the L2-norm of the observation error (u − û)
and of (u0− û0)e−µt where µ = 0.4. Note that the observation error converges to 0 in L2-norm. From
the simulations, this convergence seems to be exponential as expected.

8 Conclusions

In this paper, an output feedback control has been designed for the Korteweg-de Vries equation.
This controller uses an observer and gives the local exponential stability of the closed-loop system.
Numerical simulations have been provided to illustrate the efficiency of the output feedback design.

In order to go to a global feedback control for the nonlinear KdV equation, a first step should be
to build some nonlinear boundary controls giving a semi-global exponential stability. That means
that for any fixed r > 0 we can find a feedback law exponentially stabilizing to the origin any solution
with initial data u0 whose L2-norm is smaller than r. The term semi-global comes from the fact that
the decay rate can depend on r. Some internal feedback controls are given for KdV in [16], [20] and
[15]. The latter considers saturated controls.
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Figure 1: Solution of the closed-loop system (1)-(3)-(4)-(14)

0 2 4 6 8 10
0

5

10

15

t

 

 

‖u‖2
L2(0,L)

‖û‖2
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Figure 3: Logarithmic time evolution of the L2-norm for the observation error ũ = (u − û) and
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The second step, in order to deal with the output case, is to design an observer for the nonlinear
KdV equation to obtain a global asymptotic stability. We could for instance follow the same approach
than in the finite-dimensional case performed in [8].
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