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EXACT CONTROLLABILITY OF A NONLINEAR KORTEWEG–
DE VRIES EQUATION ON A CRITICAL SPATIAL DOMAIN∗

EDUARDO CERPA†

Abstract. We consider the boundary controllability problem for a nonlinear Korteweg–de Vries
equation with the Dirichlet boundary condition. We study this problem for a spatial domain with a
critical length for which the linearized control system is not controllable. In order to deal with the
nonlinearity, we use a power series expansion of second order. We prove that the nonlinear term gives
the local exact controllability around the origin provided that the time of control is large enough.
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1. Introduction. Let L > 0 be fixed. Let us consider the following Korteweg–de
Vries (KdV) control system with the Dirichlet boundary condition⎧⎨⎩

∂ty + ∂xy + ∂3
xy + y∂xy = 0,

y(t, 0) = y(t, L) = 0,
∂xy(t, L) = u(t),

(1.1)

where the state is y(t, ·) : [0, L] → R and the control is u(t) ∈ R. This is a well-known
example of a nonlinear dispersive partial differential equation. This equation has been
introduced by Korteweg and de Vries in [14] to describe approximately long waves
in water of relatively shallow depth. A very good book to understand both physical
motivation and deduction of the KdV equation is the book by Whitham [23].

We are concerned with the exact controllability properties of (1.1). In [17] Rosier
has proved that this control system is locally exactly controllable around the origin
provided that the length of the spatial domain is not critical. This was done using
multiplier techniques and the Hilbert Uniqueness Method (HUM) method introduced
by Lions (see [15]).

Theorem 1.1 (see [17, Theorem 1.3]). Let T > 0, and assume that

(1.2) L /∈ N :=

{
2π

√
k2 + kl + l2

3
; k, l ∈ N∗

}
.

Then there exists r > 0 such that, for every (y0, yT ) ∈ L2(0, L)2 with ‖y0‖L2(0,L) < r
and ‖yT ‖L2(0,L) < r, there exist u ∈ L2(0, T ) and

y ∈ C([0, T ], L2(0, L)) ∩ L2(0, T,H1(0, L))

satisfying (1.1), y(0, ·) = y0, and y(T, ·) = yT .
Moreover, Rosier proved that the linearized control system of (1.1) around the

origin, which is given by ⎧⎨⎩
∂ty + ∂xy + ∂3

xy = 0,
y(t, 0) = y(t, L) = 0,
∂xy(t, L) = u(t),

(1.3)
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is not controllable if L ∈ N . Indeed, there exists a finite-dimensional subspace of
L2(0, L), denoted by M , which is unreachable for the linear system. More pre-
cisely, for every nonzero state ψ ∈ M , for every u ∈ L2(0, T ), and for every y ∈
C([0, T ], L2(0, L)) ∩ L2(0, T,H1(0, L)) satisfying (1.3) and y(0, ·) = 0, one has
y(T, ·) �= ψ.

Remark 1.2. If one is allowed to use more than one boundary control input, there
is no critical spatial domain, and the exact controllability holds for any L > 0. More
precisely, let us consider the nonlinear control system{

∂ty + ∂xy + ∂3
xy + y∂xy = 0,

y(t, 0) = u1(t), y(t, L) = u2(t), ∂xy(t, L) = u3(t),
(1.4)

where the controls are u1(t), u2(t), and u3(t). As has been pointed out by Rosier in
[17], for every L > 0 the system (1.4) with u1 ≡ 0 is locally exactly controllable in
L2(0, L) around the origin. Moreover, using all three control inputs, Zhang proved in
[24] that for every L > 0 the system (1.4) is exactly controllable in the space Hs(0, L)
for any s ≥ 0 in a neighborhood of a given smooth solution of the KdV equation.

Recently, Coron and Crépeau in [8] have proved Theorem 1.1 for the critical
lengths L = 2kπ, with k ∈ N∗ satisfying

�(m,n) ∈ N∗ × N∗, with m2 + mn + n2 = 3k2 and m �= n.(1.5)

For these values of L, the subspace M of missed directions is one-dimensional and is
generated by the function f(x) = 1 − cos(x). Their method consists, first, in moving
along this direction by performing a power series expansion of the solution and then
in using a fixed point theorem.

Remark 1.3. The condition (1.5) has been communicated to the author by Coron
and Crépeau. They pointed out that if it is not satisfied, then the dimension of the
missed directions subspace is higher than one, and the proof given in [8] does not
work anymore.

In this paper, we follow the method of Coron and Crépeau to investigate the case
of critical lengths for which the subspace M is two-dimensional. The set of lengths for
which it holds is denoted by N ′. We will see in section 2 that N ′ contains an infinite
number of lengths.

This paper is organized as follows. First, in section 2, we study the linearized
control system (1.3), and we provide a complete description of the space M in terms
of the length L of the spatial domain (0, L). Then, in section 3, we prove in the case
L ∈ N ′ that the nonlinear term y∂xy allows us to reach all of the missed directions
provided that the time of control is large enough. We give an explicit expression of
the minimal time required by our method. Finally, in section 4, we get the local exact
controllability by means of a fixed point theorem; i.e., we prove our main result.

Theorem 1.4. Let L ∈ N ′. There exists TM > 0 such that for any T > TM there
exist C > 0 and r > 0 such that for every (y0, yT ) ∈ L2(0, L)2 with ‖y0‖L2(0,L) < r
and ‖yT ‖L2(0,L) < r there exist u ∈ L2(0, T ) with

‖u‖L2(0,T ) ≤ C(‖y0‖L2(0,L) + ‖yT ‖L2(0,L))
1/2(1.6)

and

y ∈ C([0, T ], L2(0, L)) ∩ L2(0, T,H1(0, L))

satisfying (1.1), y(0, ·) = y0, and y(T, ·) = yT .
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Remark 1.5. The power 1/2 in the estimate (1.6) comes, as we will see, from
performing a power series expansion of second order to deal with the nonlinearity. The
same estimate holds with power 1/3 for the critical lengths studied in [8] (third-order
expansion) and with power 1 for the noncritical lengths studied in [17] (first-order
expansion).

Remark 1.6. In order to complete the study of the exact controllability of system
(1.1), it is necessary to investigate the case where the dimension of the space M is
bigger than 2. An approach would be to use the exact controllability of the nonlinear
equation around nontrivial stationary solutions proved by Crépeau (in [10] for the
domains (0, 2πk) and in [11] for any other domain (0, L)) and then to apply the method
introduced in [5] (see also [1, 2]), that is, the return method (see [3, 4]), together with
quasi-static deformations (see also [9]). With such a method, one should obtain the
exact controllability of (1.1) for a large time. However, it seems that the minimal
time required with this approach is far from being optimal.

Remark 1.7. In Theorem 1.4, we get the local controllability for (1.1) provided
that the time of control is large enough. However, we may wonder if this condition
on the time is really necessary. This is an interesting open problem since one knows
that even if the speed of propagation of the KdV equation is infinite, it may exist a
minimal time of control. This is, for example, the case of a nonlinear control system
for the Schrödinger equation studied by Beauchard and Coron in [2]. They proved the
local controllability of this system along the ground state trajectory for a large time.
More recently, Coron proved in [6] and [7, Theorem 9.8] that this local controllability
does not hold in small time, even if the Schrödinger equation has an infinite speed of
propagation.

Remark 1.8. In [1, 2], there appear Schrödinger linear control systems which are
not controllable. One could apply the method used in this paper to prove the local
controllability of the corresponding nonlinear control systems. The main difficulty
is that in those cases the subspace of missed directions for the linear system is not
finite-dimensional.

Remark 1.9. Concerning the stabilization of the KdV equation, some results in
the case of periodic boundary conditions can be found in [13] (damping distributed
all along the domain), [20] (damping distributed with localized support), and [19]
(boundary damping). In the case of the Dirichlet boundary condition, exponential
decay of the solution has been obtained in [16] by adding a localized damping term
(see also [18] for a generalization of this result). However, the decay rate is unknown.
A natural open problem is to design for the control system (1.1) (or the linearized
one (1.3)) stabilizing feedback laws which give us an explicit decay rate. This kind of
result, even with a prescribed arbitrarily large decay rate, has been obtained in [12, 22]
for a general class of second-order (in time) systems including the wave equation and
platelike systems. It uses the fact that these systems are time-reversible. This is not
the case of the control system (1.1).

2. Linearized control system. We first recall some properties proved by Rosier
in [17]. Let L > 0 and T > 0. In order to study the following linear KdV equation:

⎧⎪⎪⎨⎪⎪⎩
∂ty + ∂xy + ∂3

xy = f,
y(t, 0) = y(t, L) = 0,
∂xy(t, L) = u(t),
y(0, ·) = y0,

(2.1)
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we define the space B := C([0, T ], L2(0, L)) ∩ L2(0, T,H1(0, L)) endowed with the
norm

‖y‖B = max
t∈[0,T ]

‖y(t)‖L2(0,L) +

(∫ T

0

‖y(t)‖2
H1(0,L)dt

)1/2

.

Let A denote the operator Aw = −w′ − w′′′ on the domain D(A) ⊂ L2(0, L)
defined by

D(A) :=
{
w ∈ H3(0, L); w(0) = w(L) = w′(L) = 0

}
.

One can see that both A and its adjoint A∗ are closed and dissipative. Hence A
generates a strongly continuous semigroup of contractions. Using this fact and the
multiplier method, Rosier proved the following existence and uniqueness result.

Proposition 2.1 (see [17, Propositions 3.2 and 3.7]). There exist unique con-
tinuous linear maps Ψ and δ

Ψ : L2(0, L) × L2(0, T ) × L1(0, T, L2(0, L)) −→ B,
(y0, u, f) �−→ Ψ(y0, u, f),

δ : L2(0, L) × L2(0, T ) × L1(0, T, L2(0, L)) −→ L2(0, T ),
(y0, u, f) �−→ δ(y0, u, f),

such that, for y0 ∈ D(A), u ∈ C2([0, T ]), with u(0) = 0, and f ∈ C1([0, T ], L2(0, L)),
then Ψ(y0, u, f) is the unique classical solution of (2.1) and

δ(y0, u, f) = ∂xΨ(y0, u, f)(·, 0).

The function Ψ(y0, u, f) is called the mild solution or simply the solution of (2.1)
in the context of this paper.

Now we focus our attention on the domains of critical length. In particular, we
describe the space M of unreachable states for the linear control system (1.3). Let
L ∈ N . There exists a finite number of pairs {(kj , lj)}nj=1 ⊂ N∗ × N∗, with kj ≥ lj ,
such that

L = 2π

√
k2
j + kj lj + l2j

3
.(2.2)

From the work of Rosier in [17], we know that for each j ∈ {1, . . . , n} there exist two
nonzero real-valued functions ϕj

1 = ϕj
1(x) and ϕj

2 = ϕj
2(x) such that ϕj := ϕj

1 + iϕj
2 is

a solution of ⎧⎨⎩
−ip(kj , lj)ϕ

j + ϕj′ + ϕj′′′ = 0,
ϕj(0) = ϕj(L) = 0,
ϕj′(0) = ϕj′(L) = 0,

(2.3)

where, for (k, l) ∈ N∗ × N∗, p(k, l) is defined by

p(k, l) :=
(2k + l)(k − l)(2l + k)

3
√

3(k2 + kl + l2)3/2
.

Easy computations lead to

ϕj
1 = C

(
cos(γj

1x) − γj
1 − γj

3

γj
2 − γj

3

cos(γj
2x) +

γj
1 − γj

2

γj
2 − γj

3

cos(γj
3x)

)
,

ϕj
2 = C

(
sin(γj

1x) − γj
1 − γj

3

γj
2 − γj

3

sin(γj
2x) +

γj
1 − γj

2

γj
2 − γj

3

sin(γj
3x)

)
,

(2.4)
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where C is a constant and the numbers γj
m, with m = 1, 2, 3, are the three roots of

x3 − x + p(kj , lj) = 0. One can easily verify that these roots are given by

γj
1 = −2π

L

(
2kj + lj

3

)
, γj

2 = γj
1 +

2πkj
L

, γj
3 = γj

2 +
2πlj
L

.(2.5)

Moreover, by choosing the constant C, we can assume that

‖ϕj
1‖L2(0,L) = ‖ϕj

2‖L2(0,L) = 1.

Roughly speaking, the functions ϕj
1 and ϕj

2 for j = 1, . . . , n are unreachable states for
the linear KdV control system (1.3) since the following functions:

y1(t, x) = Re(e−ip(kj ,lj)tϕj(x)) and y2(t, x) = Im(e−ip(kj ,lj)tϕj(x))

are solutions of (1.3) with u(t) ≡ 0, but they do not satisfy the next observability
inequality leading to the exact controllability

‖y(0, x)‖L2(0,L) ≤ C‖∂xy(t, 0)‖L2(0,T ).

Let us define the following subspaces of L2(0, L):

M := 〈{ϕ1
1, ϕ

1
2, . . . , ϕ

n
1 , ϕ

n
2}〉 and H := M⊥.

Remark 2.2. If p(kj , lj) = 0 for some j ∈ {1, . . . , n}, then ϕj
1 = ϕj

2 = 1 − cos(x).
It occurs when kj = lj , i.e., if L = 2πkj . If kj satisfies the condition (1.5), then
the space M is one-dimensional. This is the case treated in [8]. It corresponds, for
example, to the length L = 2π.

Remark 2.3. If p(kj , lj) �= 0, it is easy to see that ϕj
1 ⊥ ϕj

2. Moreover, for distinct
j1, j2 ∈ {1, . . . , n}, ϕj1

m ⊥ ϕj2
s for m, s = 1, 2. Let us give some examples. The pair

(2, 1) defines a critical length for which the space M is two-dimensional. The pair
(11, 8) defines a critical length for which the space M is four-dimensional since the
pairs (11, 8) and (16, 1) define the same critical length.

At this point, we can state the following controllability result which follows di-
rectly from the work of Rosier in [17, Propositions 3.3 and 3.9].

Theorem 2.4. Let T > 0. For every (y0, yT ) ∈ H ×H, there exist u ∈ L2(0, T ),
and y ∈ B satisfying (1.3), y(0, ·) = y0, and y(T, ·) = yT .

Now let us define the set N ′ by

N ′ :=

{
2π

√
k2 + kl + l2

3
; (k, l) ∈ N∗ × N∗ satisfying k > l and (2.7)

}
(2.6)

∀m,n ∈ N∗\{k}, k2 + kl + l2 �= m2 + mn + n2.(2.7)

It is easy to see that N ′ is the set of critical lengths for which the space of unreachable
states is two-dimensional. Indeed, let L ∈ N ′; from (2.7) there exists a unique pair
(k1, l1) := (k, l) satisfying (2.2), and since k1 > l1, p(k1, l1) > 0, and therefore the
functions ϕ1

1, ϕ
1
2 are orthogonal.

Let us follow the proof of Proposition 8.3 in [7] in order to see that N ′ contains
an infinite number of elements. Let q ≥ 1 be an integer satisfying

∀m,n ∈ N∗\{q}, m2 + mn + n2 �= 7q2.(2.8)
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Let us consider the critical length Lq defined by the pair (2q, q), that is,

Lq := 2π

√
(2q)2 + 2q2 + q2

3
= 2πq

√
7

3
.

From (2.8), it is easy to see that Lq ∈ N ′. One can verify that (2.8) holds for
q = 1, 2, 3, and therefore L1, L2, L3 ∈ N ′. Moreover, the following lemma says that
the set N ′ contains an infinite number of lengths Lq.

Lemma 2.5. There are infinitely many positive integers q satisfying (2.8).
Proof. Let q > 3 be a prime integer which does not satisfy (2.8), that is, such

that

∃m,n ∈ N∗\{q}, m2 + mn + n2 = 7q2.(2.9)

From (2.9) one gets

−3mn = (m− n)2 (mod q), mn = (m + n)2 (mod q).(2.10)

It is easy to see that m + n �= 0 (mod q), and consequently from (2.10) we have

−3 =
(
(m + n)−1(m− n)

)2
(mod q);(2.11)

that is, −3 is a square modulo q. Let us introduce the Legendre symbol, where s is a
prime and x ∈ Z is an integer not divisible by s:(x

s

)
:=

{
1 if x is a square modulo s,

−1 if x is not a square modulo s.

We have the quadratic reciprocity law due to Gauss for every prime integer z > 2,
s > 2 (see [21, Chapter 3]) (s

z

)
=

(z
s

)
(−1)ε(z)ε(s),(2.12)

where

ε(z) =

{
0 if z = 1 (mod 4),
1 if z = −1 (mod 4).

From [21, Chapter 3], we also have that for every x, y coprime to s(xy
s

)
=

(x
s

)(y
s

)
(2.13)

and for every s > 2 prime integer

(−1)ε(s) =
(−1

s

)
.(2.14)

Using (2.12), (2.14), (2.13), and (2.11) with s = q, z = 3, and since ε(3) = 1, one
obtains (q

3

)
=

(
3

q

)
(−1)ε(q) =

(
3

q

)(
−1

q

)
=

(
−3

q

)
= 1;

that is, q = 1 (mod 3).



CONTROLLABILITY OF A KORTEWEG–DE VRIES EQUATION 883

Hence, if q > 3 is a prime integer such that q = 2 (mod 3), then q satisfies
(2.8). As there are two possible nonzero congruences modulo 3, the Dirichlet density
theorem (see [21, Chapter 4]) says that (2.8) holds on a set of prime integers of density
1/2. In particular, there are infinitely many positive integers q satisfying (2.8).

From now on and until the end of this paper, we consider L ∈ N ′. From (2.7),
for each L ∈ N ′ we can define a unique

p :=
(2k + l)(k − l)(2l + k)

3
√

3(k2 + kl + l2)3/2
,

and the space M is then defined by

M := 〈ϕ1, ϕ2〉 = {αϕ1 + βϕ2 ; α, β ∈ R} ,

where ϕ1 and ϕ2 are given by (2.4) with γj
m replaced by γm, where γ1, γ2, and γ3 are

the three roots of x3 − x + p = 0. From (2.3) we also have that ϕ1 and ϕ2 satisfy⎧⎨⎩
ϕ′

1 + ϕ′′′
1 = −pϕ2,

ϕ1(0) = ϕ1(L) = 0,
ϕ′

1(0) = ϕ′
1(L) = 0,

(2.15)

and ⎧⎨⎩
ϕ′

2 + ϕ′′′
2 = pϕ1,

ϕ2(0) = ϕ2(L) = 0,
ϕ′

2(0) = ϕ′
2(L) = 0.

(2.16)

Now we investigate the evolution of the projection on the subspace M of a solution
of (1.3). Let us consider (y, u) ∈ B × L2(0, T ) satisfying (1.3). Let us multiply (2.15)
by y and integrate on [0, L]. Using integrations by parts we get

d

dt

(∫ L

0

y(t, x)ϕ1(x)dx

)
= −p

∫ L

0

y(t, x)ϕ2(x)dx.(2.17)

Similarly, multiplying (2.16) by y, we get

d

dt

(∫ L

0

y(t, x)ϕ2(x)dx

)
= p

∫ L

0

y(t, x)ϕ1(x)dx.(2.18)

Hence, from (2.17) and (2.18), we obtain∫ L

0

y(t, x)ϕ1(x) dx =

∫ L

0

y(0, x)(cos(p t)ϕ1(x) − sin(p t)ϕ2(x)) dx,(2.19) ∫ L

0

y(t, x)ϕ2(x) dx =

∫ L

0

y(0, x)(sin(p t)ϕ1(x) + cos(p t)ϕ2(x)) dx.(2.20)

From (2.19) and (2.20), we see that the projection on M of y(t, ·), denoted by
PM (y(t, ·)), only turns in this two-dimensional subspace and therefore conserves its
L2(0, L)-norm. The period of this rotation is 2π/p. Furthermore, we see that if the
initial condition y(0, ·) lies in H, the solution does too for every time t. Combining
this rotation with Theorem 2.4, we obtain the following proposition.
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Proposition 2.6. Let y0, y1 ∈ L2(0, L) be such that

‖PM (y0)‖L2(0,L) = ‖PM (y1)‖L2(0,L).

Then there exists t∗ ≤ 2π
p and u ∈ L2(0, t∗) such that the solution y = y(t, x) of (1.3),

with y(0, ·) = y0, satisfies y(t∗, ·) = y1.
Proof. Let yM = yM (t, x) be the solution of (1.3), with yM (0, ·) = PM (y0) and

without control (u ≡ 0). We know that there exists a time 0 < t∗ ≤ 2π
p such that

yM (t∗, ·) = PM (y1). On the other hand, from Theorem 2.4 there exists a control
uH ∈ L2(0, t∗) such that the corresponding solution yH = yH(t, x) of (1.3) satisfies

yH(0, ·) = PH(y0) ∈ H and yH(t∗, ·) = PH(y1).

Then y(t, x) := yH(t, x) + yM (t, x) satisfies (1.3), with u = uH , y(0, ·) = y0, and
y(t∗, ·) = y1, which ends the proof of this proposition.

3. Motion in the missed directions. Let us first explain the general idea of
the method. Let y = y(t, x) be a solution of (1.1) with control u = u(t). We consider a
power series expansion of (y, u) with the same scaling on the state and on the control

y = εy1 + ε2y2 + ε3y3 . . . ,

u = εu1 + ε2u2 + ε3u3 . . . .

In this way, we see that the nonlinear term is given by

y∂xy = ε2y1∂xy1 + ε3y1∂xy2 + ε3y2∂xy1 + (higher terms),

and therefore, for a small ε, we have the expansion of second order y ≈ εy1 + ε2y2,
where y1 and y2 are given by⎧⎨⎩

∂ty1 + ∂xy1 + ∂3
xy1 = 0,

y1(t, 0) = y1(t, L) = 0,
∂xy1(t, L) = u1(t),

and ⎧⎨⎩
∂ty2 + ∂xy2 + ∂3

xy2 = −y1∂xy1,
y2(t, 0) = y2(t, L) = 0,
∂xy2(t, L) = u2(t),

respectively. The strategy consists first in proving that the expansion to the second
order of y = y(t, x), i.e., εy1 + ε2y2, can reach all of the missed directions and then in
using a fixed point argument to prove that it is sufficient to get Theorem 1.4. This is
a classical approach to study the local controllability of a finite-dimensional control
system, and it has been applied in [8] to prove the local exact controllability around
the origin of the control system (1.1) for some critical domains.

Now we see that we can “enter” into the subspace M . More precisely, the result
we prove is the following one.

Proposition 3.1. Let T > 0. There exists (u, v) ∈ L2(0, T )2 such that if
α = α(t, x) and β = β(t, x) are the solutions of⎧⎪⎪⎨⎪⎪⎩

∂tα + ∂xα + ∂3
xα = 0,

α(t, 0) = α(t, L) = 0,
∂xα(t, L) = u(t),
α(0, ·) = 0,

(3.1)
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and ⎧⎪⎪⎨⎪⎪⎩
∂tβ + ∂xβ + ∂3

xβ = −α∂xα,
β(t, 0) = β(t, L) = 0,
∂xβ(t, L) = v(t),
β(0, ·) = 0,

(3.2)

then

α(T, ·) = 0 and β(T, ·) ∈ M\{0}.

Proof. In order to study the trajectory β = β(t, x), we set β = βu + βv, where
βu = βu(t, x) and βv = βv(t, x) are the solutions of⎧⎪⎪⎨⎪⎪⎩

∂tβ
u + ∂xβ

u + ∂3
xβ

u = −α∂xα,
βu(t, 0) = βu(t, L) = 0,
∂xβ

u(t, L) = 0,
βu(0, ·) = 0,

(3.3)

and ⎧⎪⎪⎨⎪⎪⎩
∂tβ

v + ∂xβ
v + ∂3

xβ
v = 0,

βv(t, 0) = βv(t, L) = 0,
∂xβ

v(t, L) = v(t),
βv(0, ·) = 0,

(3.4)

respectively. If u ∈ L2(0, T ) is given, by Theorem 2.4 one can find v ∈ L2(0, T ) such
that

βv(T, ·) = −PH(βu(T, ·))

and thus β(T, ·) = PM (βu(T, ·)). From this fact, one sees that the proof of Proposition
3.1 can be reduced to prove

∃u ∈ L2(0, T ) such that α(T, ·) = 0 and PM (βu(T, ·)) �= 0.(3.5)

Let u ∈ L2(0, T ). Let us multiply (3.3) by ϕ1 and integrate the resulting equality
on [0, L]. Then, using integration by parts, (2.15), and the boundary and initial
conditions in (3.3), one gets

d

dt

(∫ L

0

βu(t, x)ϕ1(x)dx

)
= −p

∫ L

0

βu(t, x)ϕ2(x)dx +
1

2

∫ L

0

α2(t, x)ϕ′
1(x)dx.

In a similar way, if we now multiply (3.3) by ϕ2, we get

d

dt

(∫ L

0

βu(t, x)ϕ2(x)dx

)
= p

∫ L

0

βu(t, x)ϕ1(x)dx +
1

2

∫ L

0

α2(t, x)ϕ′
2(x)dx.

If we call

ηk(t) :=

∫ L

0

βu(t, x)ϕk(x)dx for k = 1, 2,
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we can write the system⎧⎪⎨⎪⎩
(
η̇1(t)
η̇2(t)

)
=

(
0 −p
p 0

)(
η1(t)
η2(t)

)
+

(
1
2

∫ L

0
α2(t, x)ϕ′

1(x)dx
1
2

∫ L

0
α2(t, x)ϕ′

2(x)dx

)
,

η1(0) = 0, η2(0) = 0.

(3.6)

The solution of (3.6) is given by(
η1(t)
η2(t)

)
=

(
cos(p t) − sin(p t)
sin(p t) cos(p t)

)(
I1(t)
I2(t)

)
,

where

I1(t) :=
1

2

∫ t

0

∫ L

0

α2(s, x)(cos(ps)ϕ′
1(x) + sin(ps)ϕ′

2(x))dx ds,

I2(t) :=
1

2

∫ t

0

∫ L

0

α2(s, x)(− sin(ps)ϕ′
1(x) + cos(ps)ϕ′

2(x))dx ds.

If we work with complex numbers calling ϕ := ϕ1 + iϕ2, we get

η1(t) + iη2(t) =
1

2
eip t

∫ t

0

∫ L

0

e−ipsα2(s, x)ϕ′(x)dx ds.

Now let us assume that (3.5) fails to be true; i.e., let us suppose that

∀u ∈ L2(0, T ), η1(T ) = η2(T ) = 0 or α(T, ·) �= 0.(3.7)

If we define

Uad :=
{
u ∈ L2(0, T ) ; the solution α of (3.1) satisfies α(T, ·) = 0

}
,

then condition (3.7) implies that

∀u ∈ Uad,

∫ T

0

∫ L

0

e−ipsα2(s, x)ϕ′(x)dx ds = 0.(3.8)

Let α1 = α1(t, x) and α2 = α2(t, x) be two solutions of (3.1) such that

α1(T, ·) = α2(T, ·) = 0.

Now, for (ρ1, ρ2) ∈ R2, let α := ρ1α1 + ρ2α2 and u := αx(·, L). By linearity, we see
that α = α(t, x) is a solution of (3.1) and u ∈ Uad. Consequently, (3.8) implies that,
for every (ρ1, ρ2) ∈ R2,

ρ2
1

∫ T

0

∫ L

0

e−ipsα2
1(s, x)ϕ′(x)dx ds + 2ρ1ρ2

∫ T

0

∫ L

0

e−ipsα1(s, x)α2(s)ϕ
′(x)dx ds

+ ρ2
2

∫ T

0

∫ L

0

e−ipsα2
2(s, x)ϕ′(x)dx ds = 0.

Looking at the coefficient of ρ1ρ2, we get∫ T

0

∫ L

0

e−ipsα1(s, x)α2(s, x)ϕ′(x)dx ds = 0.(3.9)
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Let t1, t2 be such that 0 < t1 < t2 < T . We choose the trajectories α1 = α1(t, x)
and α2 = α2(t, x) such that

α2 is not identically equal to 0,(3.10)

α2(t, x)|([0,t1]∪[t2,T ])×[0,L] = 0 and α1(t, x)|[t1,t2]×[0,L] = Re(eλtyλ(x)),(3.11)

where λ ∈ C\{±ip} and yλ = yλ(x) is a complex-valued function which satisfies{
λyλ + y′λ + y′′′λ = 0,
yλ(0) = yλ(L) = 0.

(3.12)

If λ �= ±ip, one can see that Re(yλ), Im(yλ) ∈ H, and then by Theorem 2.4 there
exists such a trajectory α1 = α1(t, x).

Let us introduce the operator Ãw = −w′ − w′′′ on the domain D(Ã) ⊂ L2(0, L)
defined by

D(Ã) :=
{
w ∈ H3(0, L); w(0) = w(L) = 0, w′(0) = w′(L)

}
.

It is not difficult to see that iÃ is a self-adjoint operator on L2(0, L) with compact
resolvent. Hence, the spectrum σ(Ã) of Ã consists only of eigenvalues. Furthermore,
the spectrum is a discrete subset of iR.

If we take λ such that (−ip+λ) /∈ σ(Ã), the operator (Ã−(−ip+λ)I) is invertible,
and thus, there exists a unique complex-valued function φλ = φλ(x) solution of⎧⎨⎩

(−ip + λ)φλ + φ′
λ + φ′′′

λ = yλϕ
′,

φλ(0) = φλ(L) = 0,
φ′
λ(0) = φ′

λ(L).
(3.13)

We multiply (3.13) by α2(t, x)e(−ip+λ)t, integrate on [0, L], and use integrations by
parts together with (3.1), and the boundary and initial conditions in (3.13) to get

e−ip t

∫ L

0

eλtyλα2(t, x)ϕ′(x)dx =

d

dt

(∫ L

0

e(−ip+λ)tφλ(x)α2(t, x)dx

)
− e(−ip+λ)tφ′

λ(L)∂xα2(t, x)
∣∣∣L
x=0

.

Then let us integrate this equality on [0, T ] and use the fact that α2(0, ·) = 0 and
α2(T, ·) = 0. We obtain

(3.14)

∫ T

0

∫ L

0

e−ip teλtyλα2(t, x)ϕ′(x)dx dt =

− φ′
λ(L)

∫ T

0

e(−ip+λ)t (∂xα2(t, L) − ∂xα2(t, 0)) dt.

On the other hand, by (3.9) and (3.11), it follows that∫ T

0

∫ L

0

e−ip tRe(eλtyλ)α2(t, x)ϕ′(x)dx dt = 0,(3.15)
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and, since one can also take a trajectory α̃1 = α̃1(t, x) such that

α̃1(t, x)|[t1,t2]×[0,L] = Im(eλtyλ(x)),

one deduces from (3.9) that∫ T

0

∫ L

0

e−ip tIm(eλtyλ)α2(t, x)ϕ′(x)dx dt = 0.(3.16)

Therefore, from (3.15) and (3.16), one gets∫ T

0

∫ L

0

e−ip teλtyλα2(t, x)ϕ′(x)dx dt = 0,

and consequently from (3.14), for every λ �= ±ip such that (−ip+ λ) /∈ σ(Ã), one has

φ′
λ(L)

∫ T

0

e(−ip+λ)t (∂xα2(t, L) − ∂xα2(t, 0)) dt = 0.(3.17)

Let a ∈ R\[−1/
√

3, 1/
√

3]. We take λ = 2ai(4a2 − 1). Let

yλ(x) = Ce(−
√

3a2−1−ai)x + (1 − C)e(
√

3a2−1−ai)x − e2aix,(3.18)

where

C =
e2aiL − e(

√
3a2−1−ai)L

e(−
√

3a2−1−ai)L − e(
√

3a2−1−ai)L
.

One easily checks that such a yλ = yλ(x) satisfies (3.12) and yλ �= 0. Let us define

Σ :=
{
a ∈ R\[−1/

√
3, 1/

√
3] ; λ /∈ σ(Ã), (λ− ip) /∈ σ(Ã)

}
,

where λ = 2ai(4a2 − 1). Then the function S : Σ → C, S(a) = φ′
λ(L) is continuous.

Now we use the fact that S is not identically equal to the function 0 (the proof of this
statement will be given in Lemma 3.6 at the end of this section). Then there exist
â ∈ Σ and ε > 0 such that, for every a ∈ Σ with |a − â| < ε, S(a) �= 0. From (3.17)
one gets

∀ a ∈ Σ, |a− â| < ε,

∫ T

0

e(−p+2a(4a2−1))i t (∂xα2(t, L) − ∂xα2(t, 0)) dt = 0,

and since the function β ∈ C �→
∫ T

0
eβt (∂xα2(t, L) − ∂xα2(t, 0)) dt ∈ C is holomorphic,

it follows that

∀β ∈ C,

∫ T

0

eβt
(
∂xα2(t, L) − ∂xα2(t, 0)

)
dt = 0,

which implies that ∂xα2(t, 0) − ∂xα2(t, L) = 0 for every t. In summary, one has that
α2 = α2(t, x) satisfies ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂tα2 + ∂xα2 + ∂3
xα2 = 0,

α2(t, 0) = α2(t, L) = 0,
∂xα2(t, 0) = ∂xα2(t, L),
α2(0, ·) = 0,
α2(T, ·) = 0.

(3.19)
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If we multiply (3.19) by α2, integrate on [0, L], and use integration by parts together
with the boundary conditions, we obtain that

d

dt

∫ L

0

|α2(t, x)|2dx = 0,

which, together with α2(0, ·) = 0, implies that

α2(t, x) = 0 ∀x ∈ [0, L], ∀ t ∈ [0, T ].(3.20)

But this is in contradiction with (3.10). Thus, we have proved (3.5) and therefore
Proposition 3.1.

From now on, for each Tc > 0, we denote by (uc, vc) ∈ L2(0, T )2 the controls
given by Proposition 3.1 and by (αc, βc) the corresponding trajectories. Let us define
ϕ̃1 := βc(Tc, ·). Let us notice that, by scaling the controls, we can assume that
‖ϕ̃1‖L2(0,L) = 1. We will prove now that in any time T > π/p, we can reach all of the
states lying in M .

Proposition 3.2. Let T > π/p. Let ψ ∈ M . There exists (u, v) ∈ L2(0, T )2

such that if α = α(t, x) and β = β(t, x) are the solutions of (3.1) and (3.2), then

α(T, ·) = 0 and β(T, ·) = ψ.

Proof. Let T̂ > 0 be such that T = (π/p) + T̂ . Let Tc be such that 0 < Tc < T̂ .
Let Ta := T − Tc. If we take in (3.1) and (3.2) the controls

(u1, v1)(t) =

{
(0, 0) if t ∈ (0, Ta),

(uc(t− Ta), vc(t− Ta)) if t ∈ (Ta, T ),

we obtain that β1(T, ·) = ϕ̃1, where β1 = β1(t, x) is the corresponding solution of
(3.2). Now we use the rotation showed in section 2 (see, in particular, (2.19) and
(2.20)) in order to reach other states lying in M . Let us define ϕ̃2 := β2(T, ·), where
β2 = β2(t, x) is defined by the controls

(u2, v2)(t) =

⎧⎨⎩
(0, 0) if t ∈ (0, Ta − π

2p ),

(uc(t− Ta + π
2p ), vc(t− Ta + π

2p )) if t ∈ (Ta − π
2p , T − π

2p ),

(0, 0) if t ∈ (T − π
2p , T ).

In a similar way, the controls

(u3, v3)(t) =

⎧⎨⎩
(0, 0) if t ∈ (0, Ta − π

p ),

(uc(t− Ta + π
p ), vc(t− Ta + π

p )) if t ∈ (Ta − π
p , T − π

p ),

(0, 0) if t ∈ (T − π
p , T )

allow us to define ϕ̃3 := β3(T, ·). Notice that ϕ̃3 = −ϕ̃1.
Let Tθ be such that 0 < Tθ < min{π/(2p), T̂ − Tc}, and let Tb := (π/p) + Tθ. Let

us define ϕ̃4 := β4(T, ·), where β4 = β4(t, x) is the solution of (3.2), with

(u4, v4)(t) =

⎧⎨⎩
(0, 0) if t ∈ (0, Ta − Tb),

(uc(t− Ta + Tb), vc(t− Ta + Tb)) if t ∈ (Ta − Tb, T − Tb),
(0, 0) if t ∈ (T − Tb, T ).
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We have thus proved that we can reach the missed directions {ϕ̃k}4
k=1. Let us

now define the cones

M1 := {d1ϕ̃1 + d2ϕ̃2; d1 > 0, d2 ≥ 0},
M2 := {d1ϕ̃2 + d2ϕ̃3; d1 > 0, d2 ≥ 0},
M3 := {d1ϕ̃3 + d2ϕ̃4; d1 > 0, d2 ≥ 0},
M4 := {d1ϕ̃4 + d2ϕ̃1; d1 > 0, d2 ≥ 0}.

By construction of these cones, one has that M = ∪4
k=1Mk.

Remark 3.3. It is easy to see that if one chooses Tc, Tθ such that Tc < Tθ, then
the supports of the trajectories αk = αk(t, x) for k = 1, . . . , 4 are disjoint.

For each w = (w1, w2) ∈ R2, let us define

ρw :=
√

w2
1 + w2

2 and zw := (w1ϕ1 + w2ϕ2)/ρw ∈ M.

We have that zw ∈ Mi for some i ∈ {1, . . . , 4}, and hence there exist d1w > 0 and
d2w ≥ 0 such that zw = d1wϕ̃i + d2wϕ̃i+1. If we take the control

(uw, vw) = (d
1/2
1w ui + d

1/2
2w ui+1, d1wv

i + d2wv
i+1)

and use the fact that the trajectories αk for k = 1, . . . , 4 are disjoints, then we see
that the corresponding solution βw = βw(t, x) of (3.2) satisfies βw(T, ·) = zw.

Finally, let ψ ∈ M . With R := ‖ψ‖L2(0,L) we can write ψ = Rzw for a (w1, w2) ∈
R2 such that w2

1 + w2
2 = 1. It is easy to see that the control (u, v) = (R1/2uw, Rvw)

allows us to reach the state ψ, and so the proof of this proposition is ended.
Remark 3.4. The proof of Proposition 3.2 is the only part which needs a time

large enough. Hence, Theorem 1.4 holds for TM := π/p.
Remark 3.5. In [8] an expansion to the second order is not sufficient, and the

authors must go to the third order to enter into the subspace of missed directions.
Since in their case this subspace is one-dimensional and since they use an odd order
expansion, one can reach all of the missed states with a scaling argument. Our case is
different. We can also enter into the subspace of missed directions in any time, but,
in order to reach all of these states, our method needs a time large enough.

It remains to prove the following lemma to complete the proof of Proposition 3.1.
Lemma 3.6. The function S is not identically equal to 0.
Proof. Let a ∈ Σ and λ = 2ai(4a2 − 1). Let μ ∈ C, and let yμ = yμ(x) be a

solution of {
μyμ + y′μ + y′′′μ = 0,
yμ(0) = yμ(L) = 0.

We multiply (3.13) by yμ and integrate by parts on [0, L]. Thus, we get

(λ− ip + μ)

∫ L

0

φλyμdx− φ′
λ(L)

(
y′μ(L) − y′μ(0)

)
=

∫ L

0

yλϕ
′yμdx.(3.21)

From now on, we set μ = μ(a) := −λ + ip. With this choice we obtain from (3.21)

−S(a)
(
y′μ(L) − y′μ(0)

)
=

∫ L

0

yλϕ
′yμdx.
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Therefore, if we prove that the function

a ∈ Σ −→ J(a) :=

∫ L

0

yλϕ
′yμdx ∈ C

is not identically equal to 0, the proof of this lemma is ended. Let b ∈ R be such that
μ = 2bi(4b2 − 1). We take the function yμ given by

yμ(x) = De(−
√

3b2−1−bi)x + (1 −D)e(
√

3b2−1−bi)x − e2bix,(3.22)

where

D =
e2biL − e(

√
3b2−1−bi)L

e(−
√

3b2−1−bi)L − e(
√

3b2−1−bi)L
.

In the next computations, we use the fact that eiγ1L = eiγ2L = eiγ3L (see (2.5))
and the following formula:∫ L

0

e(v+iw)xϕ′ =

(
1 + γ2

1 − 2p/γ1

)(
1 − e(v+iw+iγ1)L

)
(vi− w)

(vi− w)3 − (vi− w) + p
,(3.23)

which holds if v + iw �= −iγm for m = 1, 2, 3.
We want to show that as a → ∞, the following expression diverges, which is in

contradiction with the fact that J(a) ≡ 0:

R(a) :=
(e(−

√
3a2−1−ai)L − e(

√
3a2−1−ai)L)(e(−

√
3b2−1−bi)L − e(

√
3b2−1−bi)L)

1 + γ2
1 − 2p/γ1

J(a).

In fact, by using (3.23), one computes explicitly J(a), and thus one sees that, as a
tends to infinity, the dominant term of R(a) is given by

Z(a) := e(
√

3a2−1+
√

3b2−1)L
{ (e(−ai−bi)L − e(ai+bi+γ1i)L)(−2a− 2b)

(−2a− 2b)3 − (−2a− 2b) + p

+
e(−ai−bi)L(−i

√
3a2 − 1 − i

√
3b2 − 1 + a + b)

(−i
√

3a2 − 1 − i
√

3b2 − 1 + a + b)3 − (−i
√

3a2 − 1 − i
√

3b2 − 1 + a + b) + p

− e(ai+bi+γ1i)L(i
√

3a2 − 1 + i
√

3b2 − 1 + a + b)

(i
√

3a2 − 1 + i
√

3b2 − 1 + a + b)3 − (i
√

3a2 − 1 + i
√

3b2 − 1 + a + b) + p

+
e(ai+bi+γ1i)L(i

√
3a2 − 1 + a− 2b)

(i
√

3a2 − 1 + a− 2b)3 − (i
√

3a2 − 1 + a− 2b) + p

− e(−ai−bi)L(−i
√

3b2 − 1 − 2a + b)

(−i
√

3b2 − 1 − 2a + b)3 − (−i
√

3b2 − 1 − 2a + b) + p

+
e(ai+bi+γ1i)L(i

√
3b2 − 1 − 2a + b)

(i
√

3b2 − 1 − 2a + b)3 − (i
√

3b2 − 1 − 2a + b) + p

− e(−ai−bi)L(−i
√

3a2 − 1 + a− 2b)

(−i
√

3a2 − 1 + a− 2b)3 − (−i
√

3a2 − 1 + a− 2b) + p

}
.
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Using that as a → ∞, b → −∞ and a + b ∼ −p/(24a2), we obtain the following
asymptotical expression for the right-hand factor of Z(a):

−(e
p

24a2 iL − e−
p

24a2 iL+iγ1L)

12a2
∼

⎧⎨⎩ − (1−eiγ1L)
12a2 if eiγ1L �= 1,

− ipL
144a4 if eiγ1L = 1.

One can see that in both cases Z(a) diverges as a → ∞, and therefore R(a)
does, which implies that J(a) is not identically equal to 0. It ends the proof of
this lemma.

4. Proof of Theorem 1.4.

4.1. Existence and uniqueness results. Let us recall the existence property
proved by Coron and Crépeau in [8] for the following nonlinear KdV equation:⎧⎪⎪⎨⎪⎪⎩

∂ty + ∂xy + ∂3
xy + y∂xy = f,

y(t, 0) = y(t, L) = 0,
∂xy(t, L) = u(t),
y(0, ·) = y0.

(4.1)

Proposition 4.1 (see [8, Proposition 14]). Let L > 0 and T > 0. There exist
ε > 0 and C > 0 such that, for every f ∈ L1(0, T, L2(0, L)), u ∈ L2(0, T ), and
y0 ∈ L2(0, L) such that

‖f‖L1(0,T,L2(0,L)) + ‖u‖L2(0,T ) + ‖y0‖L2(0,L) ≤ ε,

there exists at least one solution of (4.1) which satisfies

‖y‖B ≤ C(‖f‖L1(0,T,L2(0,L)) + ‖u‖L2(0,T ) + ‖y0‖L2(0,L)).(4.2)

For the uniqueness, one has the following.
Proposition 4.2 (see [8, Proposition 15]). Let T > 0, and let L > 0. There

exists C > 0 such that for every (y01, y02) ∈ L2(0, L)2, (u1, u2) ∈ L2(0, T )2, and
(f1, f2) ∈ L1(0, T, L2(0, L))2 for which there exist solutions y1 = y1(t, x) and y2 =
y2(t, x) of (4.1), one has the following estimates:

∫ T

0

∫ L

0

|∂xy1(t, x) − ∂xy2(t, x)|2dxdt ≤ e
C(1+‖y1‖2

L2(0,T,H1(0,L))
+‖y2‖2

L2(0,T,H1(0,L))
)

·
(
‖u1 − u2‖2

L2(0,T ) + ‖f1 − f2‖2
L1(0,T,L2(0,L)) + ‖y01 − y02‖2

L2(0,L)

)
,

∫ L

0

|y1(t, x) − y2(t, x)|2dx ≤ e
C(1+‖y1‖2

L2(0,T,H1(0,L))
+‖y2‖2

L2(0,T,H1(0,L))
)

·
(
‖u1 − u2‖2

L2(0,T ) + ‖f1 − f2‖2
L1(0,T,L2(0,L)) + ‖y01 − y02‖2

L2(0,L)

)
for every t ∈ [0, T ].

4.2. Settings and a technical lemma. Until the end of this paper, we adopt
some important notations. Let us denote, for D > 0 and R > 0,

BD
R :=

{
ξ ∈ L2(0, D) ; ‖ξ‖L2(0,D) ≤ R

}
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and recall that for each w = (w1, w2) ∈ R2, we write ρw :=
√
w2

1 + w2
2 and zw :=

(w1ϕ1 + w2ϕ2)/ρw. We also write (uw, vw) ∈ L2(0, T ) the controls defined in section
3 in order to drive the solutions βw = βw(t, x) from zero at t = 0 to zw at t = T .

By the work of Rosier in [17], we know that for each y0 ∈ L2(0, L) there exists
a continuous linear affine map (it is a consequence of applying the HUM method to
prove Theorem 2.4)

Γ0 : h ∈ H ⊂ L2(0, L) �−→ Γ0(h) ∈ L2(0, T )

such that the solution of ⎧⎪⎪⎨⎪⎪⎩
∂ty + ∂xy + ∂3

xy = 0,
y(t, 0) = y(t, L) = 0,
∂xy(t, L) = Γ0(h),
y(0, ·) = PH(y0)

satisfies y(T, ·) = h. Moreover, there exist constants D1, D2 > 0 such that

∀y0 ∈ L2(0, L), ∀h ∈ H, ‖Γ0(h)‖L2(0,T ) ≤ D1(‖h‖L2(0,L) + ‖y0‖L2(0,L)),(4.3)

∀y0 ∈ L2(0, L), ∀h, g ∈ H, ‖Γ0(h) − Γ0(g)‖L2(0,T ) ≤ D2‖h− g‖L2(0,L).(4.4)

Let y0 ∈ L2(0, L) be such that ‖y0‖L2(0,L) < r, r > 0 to be chosen later. Let us
define the functions G and F

G : L2(0, L) −→ L2(0, T ),

z = PH(z) + w1ϕ1 + w2ϕ2 �→ G(z) = Γ0(PH(z)) + ρ
1/2
w uw + ρwvw,

F : BT
ε1 ∩ L2(0, T ) −→ L2(0, L),

u �−→ F (u) = y(T, ·),

where y = y(t, x) is the solution of⎧⎪⎪⎨⎪⎪⎩
∂ty + ∂xy + ∂3

xy + y∂xy = 0,
y(t, 0) = y(t, L) = 0,
∂xy(t, L) = u(t),
y(0, ·) = y0,

(4.5)

and ε1 is small enough so that the function F is well defined. It holds if ε1 + r < ε,
where ε is given by Proposition 4.1. The map F is even continuous according to
Proposition 4.2. Let yT ∈ L2(0, L) be such that ‖yT ‖ < r. Let Λy0,yT

denote the map

Λy0,yT
: BL

ε2 ∩ L2(0, L) −→ L2(0, L),
z �−→ Λy0,yT

(z) = z + yT − F ◦G(z),

where ε2 is small enough so that Λy0,yT
is well defined (ε2 exists according to Propo-

sition 4.1 and to the continuity of G).
Let us notice that if we find a fixed point z̃ ∈ L2(0, L) of the map Λy0,yT

, then we
will have F ◦G(z̃) = yT , and this means that the control u := G(z̃) ∈ L2(0, T ) drives
the solution of (4.5) from y0 at t = 0 to yT at t = T .

Let us assert the following technical result which will be needed to study the map
Λy0,yT

.
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Lemma 4.3. There exist ε3 > 0 and C3 > 0 such that for every z, y0 ∈ BL
ε3 the

following estimate holds:

‖z − F (G(z))‖L2(0,L) ≤ C3(‖y0‖L2(0,L) + ‖z‖3/2
L2(0,L)).

Proof. Let z, y0 ∈ L2(0, L). Let w = (w1, w2) ∈ R2 be such that z = PH(z) +
ρwzw. Let y = y(t, x) be a solution of⎧⎪⎪⎨⎪⎪⎩

∂ty + ∂xy + ∂3
xy + y∂xy = 0,

y(t, 0) = y(t, L) = 0,
∂xy(t, L) = G(z),
y(0, ·) = y0.

(4.6)

From (4.3) and since ρw ≤ ‖z‖L2(0,L), one deduces that if ‖z‖L2(0,L) is smaller

than 1 (and therefore ‖z‖L2(0,L) ≤ ‖z‖1/2
L2(0,L)), then there exists a constant D3 such

that

‖G(z)‖L2(0,T ) ≤ D3(‖y0‖L2(0,L) + ‖z‖1/2
L2(0,L)).(4.7)

Remark 4.4. Let us notice that the controls uw, vw in the definition of the map
G drive the solution βw from the origin at t = 0 to the state zw at t = T , with
‖zw‖L2(0,L) = 1, and therefore they are uniformly bounded.

By using (4.2) and (4.7), one can find ε2, C2 > 0 such that for every z, y0 ∈ BL
ε2

the unique solution of (4.6) satisfies

‖y‖B ≤ C2(‖y0‖L2(0,L) + ‖z‖1/2
L2(0,L)).(4.8)

Let ỹ = ỹ(t, x), αw = αw(t, x), βw = βw(t, x), and β0 = β0(t, x) be the solutions
of ⎧⎪⎪⎨⎪⎪⎩

∂tỹ + ∂xỹ + ∂3
xỹ = 0,

ỹ(t, 0) = ỹ(t, L) = 0,
∂xỹ(t, L) = Γ0(PH(z)),
ỹ(0, ·) = PH(y0),⎧⎪⎪⎨⎪⎪⎩

∂tαw + ∂xαw + ∂3
xαw = 0,

αw(t, 0) = αw(t, L) = 0,
∂xαw(t, L) = uw(t),
αw(0, ·) = 0,⎧⎪⎪⎨⎪⎪⎩

∂tβw + ∂xβw + ∂3
xβw = −αw∂xαw,

βw(t, 0) = βw(t, L) = 0,
∂xβw(t, L) = vw(t),
βw(0, ·) = 0,⎧⎪⎪⎨⎪⎪⎩

∂tβ
0 + ∂xβ

0 + ∂3
xβ

0 = 0,
β0(t, 0) = β0(t, L) = 0,
∂xβ

0(t, L) = 0,
β0(0, ·) = PM (y0),

respectively. Let us define

φ := y − ỹ − ρ1/2
w αw − ρwβw − β0.
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We have that φ = φ(t, x) satisfies⎧⎪⎪⎨⎪⎪⎩
∂tφ + ∂xφ + ∂3

xφ + φ∂xφ = −∂x(φa) − b,
φ(t, 0) = φ(t, L) = 0,
∂xφ(t, L) = 0,
φ(0) = 0,

where

a := ỹ + ρ
1/2
w αw + ρwβw + β0,

b := ỹ∂xỹ + ∂x(ỹ(ρ
1/2
w αw + ρwβw + β0)) + ρ

3/2
w ∂x(αwβw)

+ ρ2
wβw∂x(βw) + ρ

1/2
w ∂x(αwβ

0) + ρw∂x(βwβ
0) + β0∂xβ

0.

It is easy to see that there exists C4 > 0 such that for every z, y0 ∈ BL
ε2

‖φ‖B ≤ C4(‖y0‖L2(0,L) + ‖z‖1/2
L2(0,L)),(4.9)

‖a‖B ≤ C4(‖y0‖L2(0,L) + ‖z‖1/2
L2(0,L)),(4.10)

‖b‖L1(0,T,L2(0,L)) ≤ C4(‖y0‖L2(0,L) + ‖z‖3/2
L2(0,L)).(4.11)

One can also prove that there exists C5 > 0 such that for every f, g ∈ B

‖∂x(fg)‖L1(0,T,L2(0,L)) ≤ C5‖f‖B‖g‖B.(4.12)

By (4.2), (4.11), and (4.12), there exists C6 > 0 such that

‖φ‖2
B ≤ C6(‖φ‖2

B‖a‖2
B + ‖y0‖2

L2(0,L) + ‖z‖3
L2(0,L));

i.e., one has

‖φ‖2
B(1 − C6‖a‖2

B) ≤ C6(‖y0‖2
L2(0,L) + ‖z‖3

L2(0,L)),

which, together with (4.10), implies the existence of ε3 and C7 such that for every
z, y0 ∈ BL

ε3

‖φ‖B ≤ C7(‖y0‖L2(0,L) + ‖z‖3/2
L2(0,L)).(4.13)

Finally, from (4.13) and using that ‖β0(0)‖L2(0,L) = ‖β0(T )‖L2(0,L) (β0 turns
only in the subspace M), one obtains with C3 := C7 + 1

‖z − F ◦G(z)‖L2(0,L) ≤ ‖z − F ◦G(z) + β0(T )‖L2(0,L) + ‖β0(T )‖L2(0,L)

= ‖φ(T )‖L2(0,L) + ‖β0(0)‖L2(0,L)

≤ ‖φ‖B + ‖y0‖L2(0,L)

≤ C7(‖y0‖L2(0,L) + ‖z‖3/2
L2(0,L)) + ‖y0‖L2(0,L)

≤ C3(‖y0‖L2(0,L) + ‖z‖3/2
L2(0,L)),

which ends the proof of Lemma 4.3.
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4.3. Fixed point in the subspace H. For w = (w1, w2) ∈ R2 fixed, let us
study the map Π := PH ◦ Λy0,yT

(· + ρwzw) on the subspace H (recall that ρwzw =
w1ϕ1 + w2ϕ2):

Π : H −→ H,
h �−→ Π(h) = h + PH(yT ) − PH(F ◦G(h + ρwzw)).

In order to prove the existence of a fixed point of the map Π, we will apply the Banach
fixed point theorem to the restriction of Π to the closed ball BL

R ∩ H, with R > 0
small enough. By using Lemma 4.3 we see that

‖Π(h)‖L2(0,L) ≤ ‖yT ‖L2(0,L) + ‖h + ρwzw − F ◦G(h + ρwzw)‖L2(0,L)

≤ ‖yT ‖L2(0,L) + C3(‖y0‖L2(0,L) + ‖h + ρwzw‖3/2
L2(0,L))

≤ C ′
3(‖y0‖L2(0,L) + ‖yT ‖L2(0,L) + ρ

3/2
w ) + C3‖h‖3/2

L2(0,L)

≤ C ′
3(2r + ρ

3/2
w ) + C3‖h‖3/2

L2(0,L),

where C ′
3 := C3 + 1. Hence, if we choose R such that R3/2 ≤ R

2C3
and r, ρw such that

C ′
3(2r + ρ3/2

w ) ≤ R

2
,

then it follows that

‖Π(h)‖L2(0,L) ≤ R and so Π(BL
R ∩H) ⊂ (BL

R ∩H).

It remains to prove that the map Π is a contraction. Let g, h ∈ BL
R ∩ H. Let

y = y(t, x), q = q(t, x), ỹ = ỹ(t, x), and q̃ = q̃(t, x) be the solutions of the following
problems: ⎧⎪⎪⎨⎪⎪⎩

∂ty + ∂xy + ∂3
xy + y∂xy = 0,

y(t, 0) = y(t, L) = 0,
∂xy(t, L) = G(g + ρwzw),
y(0, ·) = y0,⎧⎪⎪⎨⎪⎪⎩
∂tq + ∂xq + ∂3

xq + q∂xq = 0,
q(t, 0) = q(t, L) = 0,
∂xq(t, L) = G(h + ρwzw),
q(0, ·) = y0,⎧⎪⎪⎨⎪⎪⎩

∂tỹ + ∂xỹ + ∂3
xỹ = 0,

ỹ(t, 0) = ỹ(t, L) = 0,
∂xỹ(t, L) = Γ0(g),
ỹ(0, ·) = PH(y0),⎧⎪⎪⎨⎪⎪⎩
∂tq̃ + ∂xq̃ + ∂3

xq̃ = 0,
q̃(t, 0) = q̃(t, L) = 0,
∂xq̃(t, L) = Γ0(h),
q̃(0, ·) = PH(y0),

repsectively. Let us define φ := y − ỹ, ψ := q − q̃, and γ := φ − ψ. One sees that γ
satisfies ⎧⎪⎪⎨⎪⎪⎩

∂tγ + ∂xγ + ∂3
xγ + γ∂xγ = −∂x(γa) − b,

γ(t, 0) = γ(t, L) = 0,
∂xγ(t, L) = 0,
γ(0) = 0,

(4.14)
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where

a := ỹ + ψ and b := ∂x (q(ỹ − q̃)) + (ỹ − q̃)∂x(ỹ − q̃).

It is easy to see that there exists a constant C8 > 0 such that

‖b‖L1(0,T,L2(0,L)) ≤ C8 (‖q‖B + ‖ỹ‖B + ‖q̃‖B) ‖ỹ − q̃‖B,(4.15)

‖∂x(aγ)‖L1(0,T,L2(0,L)) ≤ C8 (‖q‖B + ‖ỹ‖B + ‖q̃‖B) ‖γ‖B.(4.16)

By using Proposition 4.2, (4.15), and (4.16) we get the existence of C9 > 0 such that

‖γ‖2
B ≤ C9(‖q‖B + ‖ỹ‖B + ‖q̃‖B)2(‖ỹ − q̃‖2

B + ‖γ‖2
B).(4.17)

In addition, since w := ỹ − q̃ satisfies the following linear equation:⎧⎪⎪⎨⎪⎪⎩
∂tw + ∂xw + ∂3

xw = 0,
w(t, 0) = w(t, L) = 0,
∂xw(t, L) = Γ0(g) − Γ0(h),
w(0, ·) = 0,

there exists C10 > 0 such that

‖ỹ − q̃‖B ≤ C10‖Γ0(g) − Γ0(h)‖L2(0,T ),

and so, from (4.4), one gets

‖ỹ − q̃‖B ≤ C10D2‖g − h‖L2(0,L).(4.18)

Moreover, it is easy to see that there exists a constant C11 > 0 such that

‖q‖B + ‖q̃‖B + ‖ỹ‖B ≤ C11(‖y0‖L2(0,L) + ‖h‖L2(0,L) + ‖g‖L2(0,L) + ρ1/2
w ).(4.19)

Thus, using (4.17)–(4.19) we see that if R, ρw, r are small enough, it follows that

‖γ‖B ≤ 1
2‖g − h‖L2(0,L).

Therefore, we have

‖Π(g) − Π(h)‖L2(0,L) ≤ ‖g − F ◦G(g + ρwzw) − h + F ◦G(h + ρwzw)‖L2(0,L)

= ‖γ(T )‖L2(0,L) ≤ ‖γ‖B
≤ 1

2‖g − h‖L2(0,L),

which implies the existence of a unique fixed point h(y0, yT , w1, w2) ∈ BL
R ∩H of the

map Π|BL
R∩H . Moreover, the more precise proposition follows.

Proposition 4.5. There exist R0 > 0, D > 1 such that for every 0 < R < R0,
for every y0, yT ∈ BL

R/D, (w1, w2) ∈ R2, with ρw < R/D, there exists a unique

h(y0, yT , w1, w2) ∈ BL
R ∩H fixed point of the map Π|BL

R∩H .

4.4. Fixed point in the subspace M . We now apply the Brouwer fixed point
theorem to the restriction of the map

τ : M −→ M,
w1ϕ1 + w2ϕ2 → PM (ρwzw + yT − F ◦G(ρwzw + h(y0, yT , w1, w2)))
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to the closed ball BL
R̂
∩M , with R̂ small enough. Using Lemma 4.3, the continuity (in a

neighborhood of 0 ∈ (L2(0, L))2×R2) of the map (y0, yT , w1, w2) �−→ h(y0, yT , w1, w2)
and choosing r small enough, we get the existence of a radius R̂ > 0 such that
τ(BL

R̂
∩ M) ⊂ BL

R̂
∩ M . This inclusion and the continuity of the map τ allow us to

apply the Brouwer fixed point theorem. Therefore, there exists (w̃1, w̃2) ∈ R2, with
w̃2

1 + w̃2
2 ≤ R̂2, such that h̃ := h(y0, yT , w̃1, w̃2) satisfies

PM (yT − F ◦G(h̃ + w̃1ϕ1 + w̃2ϕ2)) = 0.(4.20)

Using the fact that

Π(h̃) = PH(h̃ + yT − F ◦G(h̃ + w̃1ϕ1 + w̃2ϕ2)) = h̃,

we obtain

PH(yT − F ◦G(h̃ + w̃1ϕ1 + w̃2ϕ2)) = 0,

which together with (4.20) implies that

yT = F ◦G(h̃ + w̃1ϕ1 + w̃2ϕ2),

which ends the proof of Theorem 1.4. Let us remark that from our proof it follows
that if r is chosen small enough, one can take R̂ := rD, where D > 0 is given by
Proposition 4.5. By using this proposition one obtains the estimate (1.6).
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