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Abstract. In this paper, we consider the internal control problem for the Boussinesq equation posed on the
torusT. Previous results had dealt with this problemwhen the state space is H2(T)× L2(T). The main goal
of this work is to improve the regularity until Hs (T) × Hs−2(T) for s ≥ −1/2. The exact controllability
of the linearized equation is proved by using the moment method and spectral analysis. In order to get the
same result for the nonlinear equation, we use a fixed point argument in Bourgain spaces.

1. Introduction

The Boussinesq equation

utt + uxxxx − uxx + (u2)xx = 0 (1.1)

is a nonlinear dispersive mathematical model appearing in Physics to study nonlinear
strings [1]. Equation (1.1) is also known as the good Boussinesq equation, due to
the fact that well-posedness property can be shown, by looking at the highest-order
terms, we see that the main part of Eq. (1.1) can be split in two Schrödinger equations
traveling in opposite directions. The local well-posedness of Eq. (1.1) has been studied
in different domain. For instance in the whole real line R by [1,5,6,9,10], in the half
line R+ by [16], in the Torus T in [4,7,14] and in a bounded interval by [15].
Other Boussinesq-like equation appearing in the literature is obtained by changing

the sign of the high-order term uxxxx in (1.1), that is,

utt − uxxxx − uxx + (u2)xx = 0. (1.2)

The nice well-posedness property is lost, and the equation becomes ill-possed. This
can be seen by realizing that the highest-order terms of Eq. (1.2) can be split in two
heat-like equations where one of them has the wrong sign in the diffusion, for more
details, see [10]. The bad Boussinesq equation (1.2) is relevant in applications since
it describes the propagation of water waves of small amplitude in shallow waters with
flat bottom.
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Another model that approximates the Boussinesq equation (1.2) was introduced in
[12] and looks like

utt + uxxtt + uxx = (u2)xx . (1.3)

The mix of derivatives helps to improve the well-posedness results for (1.3), which
justify the fact that this equation is called the improved Boussinesq equation. See [18].
Concerning controllability properties for Boussinesq equations, different type of

problems have been treated. The control of (1.1) has been studied on an interval with
boundary inputs [3,11] and on the torus T with distributed inputs [17]. Regarding
control properties of the improved Boussinesq equation (1.3), we found the article [2].

In this paper, we will concentrate in Eq. (1.1) on the torus T, that is the bounded
domain (−π,π) with periodic boundary conditions. Initially, in [4] the local well-
posedness of (1.1) on T was shown assuming initial conditions Hs(T) × Hs−2(T)
provided that 0 ≤ s ≤ 1. Later, in [7] the local well-posedness of (1.1) was shown for
initial data in Hs(T) × Hs−2(T) for s > − 1

4 . This result was improved in [9] where

the sharp regularity H− 1
2 (T) × H− 5

2 (T) was reached.
In [17], the author proves the exact controllability in the state space H2(T)×L2(T).

The main goal of this work is to study the case with regularity Hs(T)× Hs−2(T) for
s ≥ − 1

2 . We want to answer the following question: Can we find a control h = h(x, t)
such that the solution of system

{
utt + uxxxx − uxx + (N (u))xx = g(x)h(x, t), x ∈ T, t ∈ [0, T ],
u(x, 0) = u0(x) and ut (x, 0) = u1(x), x ∈ T,

(1.4)

satisfies

u(x, T ) = u0T (x), and ut (x, T ) = u1T (x)? (1.5)

The solution u = u(x, t) of (1.4) is a complex-valued function depending on space
and time, the nonlinearity N is any linear combination of u2, uū and ū2, and the
function g(x) is a given nonzero real-valued function. This function g(x) can have
a support strictly contained on the torus; thus, it can represent a localization of the
control h(x, t), which would be only able to act on a part of the domain.

Our main result, giving a positive answer to the exact controllability in a local sense,
is the following.

THEOREM 1. Let T > 0, s ≥ − 1
2 and g ∈ Hs(T) ∩ L2(T) \ {0} be given. There

exists r > 0 such that for any (u0, u1), (u0T , u1T ) ∈ Hs(T) × Hs−2(T) satisfying
∫

T
u0(x)dx =

∫

T
u0T (x)dx = 0

and

∥u0∥s ≤ r, ∥u1∥s−2 ≤ r, ∥u0T ∥s ≤ r, ∥u1T ∥s−2 ≤ r,
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there exists a control h ∈ L2(0, T ; Hs−2(T)), such that the solution u ∈ C([0, T ];
Hs(T)) of (1.4) satisfies (1.5).

The main idea for this article is based on [13] where it is shown that the Schrödinger
equation with a cubic nonlinear term posed on an interval with periodic boundary
conditions is locally exactly controllable in Hs(T) for s ≥ 0. In [13], the authors
perform a spectral analysis of the linear operator and by solving a moment problem,
they found the characterization of the internal control for the linear problem. The
nonlinear problem is treated as a perturbation by fixed point theory. In this paper, in
order to achieve lower regularity, we study the controllability initially in Hs(T) for
s ≥ −1/4, and then, for −1/2 ≤ s ≤ −1/4.

In order to prove our main theorem, we need first some spectral properties and a
well-posedness framework. This is provided in Sect. 2. Then, by using the moment
method, we prove in Sect. 3 the controllability of the linear system. Finally, Sect. 4 is
devoted to apply a fixed point argument in Bourgain spaces in order to deal with the
nonlinear equation and obtain the local exact controllability stated in Theorem 1.

2. Spectral analysis and well-posedness

From now on, we denote by Z any space Z(T) defined on the tours. For s ∈ R
and T > 0 fixed, we use the notation L2(Hs) := L2([0, T ]; Hs(T)) and Xs :=
C([0, T ];Hs), where Hs is the product Hilbert space

Hs := Hs
o (T) × Hs−2(T),

equipped with the norm

∥w⃗∥Hs :=
{
∥w1∥2s + ∥w2∥2s−2

}1/2

for w⃗ =
(
w1

w2

)
. In this paper, we use the notation

Hs
o (T) =

{
w ∈ Hs(T)

/∫

T
w(x) dx = 0

}
.

For any v(x) =∑
n∈Z vneinx , the Hs(T) Sobolev norm can be defined by

∥v∥s :=
(
∑

n∈Z
|vn|2 < n >2s

) 1
2

with < n >= (1+ |n|2)1/2.
From now on, we will denote by C > 0 a general constant which may vary from

line to line.
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2.1. Spectral analysis

We analyze the linear operator related to the Boussinesq equation and study its
spectral structure, eigenvalues and eigenfunctions, which will play an important role
in the characterization of the solutions of (1.4).

Let us consider the linear periodic Boussinesq problem
⎧
⎪⎪⎨

⎪⎪⎩

utt + uxxxx − uxx = 0, x ∈ T, t ∈ R,
∂
j
x u(−π, t) = ∂

j
x u(π, t), for j = 0, 1, 2, 3,

u(x, 0) = u0(x), ut (x, 0) = u1(x).

(2.1)

Let A : D(A) ⊂ Hs → Hs be the linear operator associated to (2.1) defined as

A :=
(

0 I
∂2x − ∂4x 0

)
, (2.2)

with a domain D(A) := Hs+4
o (T) × Hs(T). We can see that A∗ = −A. In an

abstract setting, by considering h ∈ L2(0, T ; Hs−2(T)), y⃗ =
(
u
ut

)
, y⃗0 =

(
u0
u1

)
,

and Bh =
(

0
g(x)h(x, t)

)
, the linear system can be written as

⎧
⎨

⎩

d y⃗
dt

= Ay⃗ + Bh,

y⃗(0) = y⃗0.
(2.3)

The discrete spectrum of the operator A is

σ (A) :=
{
λn = i sgn(n)

√
n2(n2 + 1)

/
n = 0,±1,±2, ...

}
. (2.4)

The normalized eigenfunction associated with λ0 = 0 is φ⃗0 = 1√
2π

(
0
1

)
, and in the

other cases, the normalized eigenfunctions associated with λn for n ∈ Z∗ = Z \ {0}
are

φ⃗n± = η⃗n±
∥η⃗n±∥Hs

, for n = ±1,±2, . . .

where {η⃗0, η⃗n±}n∈Z ∈ Hs is the Riesz basis formed by η⃗0 =
(
0
1

)
,

η⃗n+ =
(

1
λn
einx

einx

)

, η⃗n− =
(

1
λn
e−inx

e−inx

)

, for n = ±1,±2, . . .

We have that {φ⃗0, φ⃗n±}n∈Z is an orthonormal basis ofHs , that is, for any y⃗0 ∈ Hs,

there exists unique coefficients β0 and βn± such that

y⃗0 := β0φ⃗0 +
∑

n∈Z∗

(
βn+φ⃗n+ + βn−φ⃗n−

)
. (2.5)
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Remark that the expansion given in (2.5) is a Fourier series. Moreover, the solution y⃗
of (2.3) is

y⃗(x, t) = β0eλ0t φ⃗0(x)+
∑

n∈Z∗
eλn t (βn−φ⃗n−(x)+ βn+φ⃗n+(x))

+
∫ t

0

{

α0(t ′)eλ0(t−t ′)φ⃗0(x)+
∑

n∈Z∗

∫ t

0
eλn(t−t ′)

(
αn+(t ′)φ⃗n+(x)+ αn−(t ′)φ⃗n−(x)

)}
dt ′ (2.6)

where

α0(t) = ⟨Bh(x, t), φ⃗0(x)⟩s
and

αn±(t) = ⟨Bh(x, t), φ⃗n±(x)⟩s, for n ∈ Z∗.

The coefficients β0,β± are associated to the initial data y⃗0 as in the Fourier decom-
position (2.5).

2.2. Well-posedness

The well-posedness results for the linear system are a direct consequence of the
spectral analysis obtained in Sect. 2.1. The system (2.3) is well-posed in Hs for any
s ∈ R, because the operator A, defined in (2.2), generates a group of isometries on
the spaceHs . Therefore, if h ∈ L2(Hs−2), by semigroup theory there exists a unique
solution y⃗ ∈ Xs of (2.3). Additionally, by Duhamel’s principle, the solution of (2.3)
can be written in integral form as

y⃗(t) = eAt y⃗0 +
∫ t

0
eA(t−t ′)Bh(t ′)dt ′ (2.7)

while the solution of the nonlinear system (1.4) can be written as

y⃗(t) = eAt y⃗0 +
∫ t

0
eA(t−t ′)Bh(t ′)dt ′ +

∫ t

0
eA(t−t ′)

(
0

N (u)xx

)
dt ′. (2.8)

However, if we are in a low regularity framework, the nonlinear term cannot be esti-
mated ifwe only use Sobolev spaces. Since,we aim to achieve s ≥ − 1

2 with a quadratic
nonlinear term we consider two cases taking advantage of the bilinear estimates done
initially in [7] for s > − 1

4 , and after in [9] for − 1
2 ≤ s ≤ − 1

4 .

2.2.1. Case s > − 1
4

The integral form (2.8) of the solution of (2.3) is not going to be enough to achieve
the desiblack regularity. We need to take advantage of the structure of the semigroup
and consider that the solution of (1.4) is
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u(t) = W0(t)u0 +W1(t)u1 +
∫ t

0
W1(t − t ′)gh(t ′)dt ′

+
∫ t

0
W1(t − t ′)N (u)xx (t ′)dt ′ (2.9)

where W0,W1 are the two vector components of the semigroup generated by the
operator A. They are defined by W0(t) :=

∑
n∈Z Wn

0 (t) and W1(t) :=
∑

n∈Z Wn
1 (t),

with

Wn
0 (t)u0 =

(
etλn + e−tλn

2
û0

)̂−1

=
(
ei sgn(n)t

√
n2(n2+1) + e−i sgn(n)t

√
n2(n2+1)

2
û0

)̂−1

, (2.10)

Wn
1 (t)u1 =

(
etλn − e−tλn

2λn
û1

)̂−1

=
(
ei sgn(n)t

√
n2(n2+1) − e−i sgn(n)t

√
n2(n2+1)

2i sgn(n)
√
n2(n2 + 1)

û1

)̂−1

, (2.11)

where we denote ˆ and ˆ−1 the Fourier transform in space and its inverse transform,
respectively.
Thus, the solution written as (2.9) allows to consider Bourgain spaces and use some

bilinear estimates already proven in the literature. We recall that for s, b ∈ R fixed,
the Bourgain space Xs,b is the completion of the Schwartz class S(R2) with respect
to the norm

∥w∥Xs,b := ∥ < |τ | −
√
n2(n2 + 1) >b< n >s w̃∥ℓ2n L2

τ

where˜and˜−1 are the Fourier transform in time and space and its inverse transform,
respectively. The restriction in time of the norm ∥w∥Xs,b , for T > 0, defines the space
XT
s,b with the norm

∥u∥XT
s,b

:= inf
w∈Xs,b

{
∥w∥Xs,b

/
w(t, .) = u(t, .) on [0, T ]

}
.

Additionally, not only for the well-posedness problem but also for the control prob-
lem we require some estimates for the linear and nonlinear problem.
As usual when dealing with dispersive equations in Bourgain spaces, we consider a

cutoff function θ ∈ C∞
0 (R)with 0 ≤ θ ≤ 1, θ ≡ 1 in [−1, 1], and supp(θ) ⊂ [−2, 2].

For 0 < T < 1, one defines θT (t) = θ( t
T ). Thus, the solution of the linear system

(2.1) is written as

u(t) = θT (t)
(
W0(t)u0 +W1(t)u1 +

∫ t

0
W1(t − t ′)gh(t ′)dt ′

)
, (2.12)



Vol. 18 (2018) On the controllability of the Boussinesq equation 1507

while the solution of the nonlinear system (1.4) as

u(t) = θT (t)(
W0(t)u0 +W1(t)u1 +

∫ t

0
W1(t − t ′)gh(t ′)dt ′ +

∫ t

0
W1(t − t ′)N (u)xx (t ′)dt ′

)
.

(2.13)

The following estimates will be useful in the sequel in order to deal with the linear
and nonlinear part of (2.13).

LEMMA 2. [7, Lemma 2.1] Let u(t) be the solution (2.12) of (2.1). Then,

∥u∥Xs,b ≤ C (∥u0∥s + ∥u1∥s−2) . (2.14)

LEMMA 3. [7, Lemma 2.2] Let s > −1/4, − 1
2 < b′ ≤ 0 ≤ b ≤ b′ + 1 and

0 < T ≤ 1. Then,

∥θT
∫ t

0
W1(t − t ′)N (u)xx (t ′)dt ′∥Xs,b ≤ T 1−(b−b′)

∥∥∥
( [N (u)xx ]˜(n, τ )

2λn

)̃−1 ∥∥∥
Xs,b′

where τ is the frequency variable corresponding to time and n the frequency variable
corresponding to space.

It is worth to mention that Lemma 3 played a key role in the proof of the local
well-posedness for (1.4) when s > − 1

4 , as stated in the following result.

THEOREM 4. [7, Theorem 1.3] Let s > − 1
4 and T > 0. Then, there exists r > 0

such that for any u0 ∈ Hs(T) and u1 ∈ Hs−2(T) with

∥u0∥s ≤ r, and ∥u1∥s−2 ≤ r

and any h ∈ L2(Hs−2), there exists a unique solution u of (1.4) such that

u ∈ C([0, T ], Hs(T)) ∩ Xs,b.

REMARK 5. In fact, Farah and Scialom stated in [7] this result with a smallness
condition on the time of existence. Looking at their proof, we see that the same result
can be obtained, for any fixed time T but with a smallness condition on the initial
data. Concerning the term h, it does not appear in [7] but can be easily added as a
source term by classical semigroup theory.

2.2.2. Case − 1
2 ≤ s ≤ − 1

4

For lower regularity, instead of using the characterization (2.9)–(2.10), we use the
ideas of Kishimoto in [9]. Considering the change of variable

v := u + i
(
1 − ∂2x

)−1
∂t u
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which transforms theCauchyproblemassociated to (1.4) into theSchrödinger equation
{
ivt + vxx = 1

2 (u − ū) − 1
4ω

2(v + v̄)2 + Gh,

v(0, x) = v0(x),
(2.15)

for v a complex-valued function, the operator ω2 = −∂2x
1−∂2x

and the initial data v0 =
u0 + i(1 − ∂2x )

−1u1.
The solution of (1.4) is recoveblack by considering

u := Re(v) and (u0, u1) := (Re(v0), (1 − ∂2x )Im(v0)).

To consider the control systems (1.4) with a control Gh(x, t) = g(x)h(x, t), it can be
deduced from the change of variable that Gh should be real and the bilinear estimate
to be used will be in this cases given by the following.

PROPOSITION 6. [9, Proposition 2.5] Let λ ≥ 1 and − 1
4 ≥ s ≥ − 1

2 . Then, we
have

∥-−1ω2
λ(u

λvλ)∥Ws ! Cs(λ)∥uλ∥Ws∥vλ∥Ws

with Cs(λ) =
{

λ−2s− 1
2 , − 1

4 > s ≥ − 1
2 ,

(log(1+ λ))1/2 s = − 1
4 .

Here, the parameter λ with λ ≥ 1 is the scaling of the solution

uλ(x, t) := λ−2u(λ−2t, λ−1x),

and the pseudo-differential operators are

ω2
λ = F−1

n
λ2n2

1+ λ2n2
Fx and -σ = F−1

τ,n < τ + n2 >σ Ft,x ,

for σ ∈ R.
It is necessary to introduce the spaces Ws and Y s uniquely defined for − 1

4 ≥ s ≥
− 1

2 , through the norms of the projection over the frequency size

∥v∥Ws := ∥P{<τ+n2>!<n>}v∥Xs,1 + ∥P{<τ+n2>"<n>}v∥Xs+1,1

+ ∥P{<τ+n2>≫<n>2}v∥Ys ,

and

∥u∥Y s := ∥ < n >s ũ∥2
n L1

τ
,

where, as before, < n >:= (1+ |n|2)1/2. Let us notice that we have the embeddings

Xs,1, Xs+θ,1 ∩ Y s ↪→ Ws ↪→ Xs,0 ∩ Y s
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for − 1
4 ≥ s ≥ − 1

2 and 0 < θ < 1. Additionally,

X−1/2,1 ↪→ Ws and ↪→ X−1/2,1 ∩ Y s

for s = −1/2.
This approach improves the well-posedness property for the Cauchy problem (1.4)

until the space H− 1
2 (T) × H− 5

2 (T).

THEOREM 7. [9, Theorem 1.1] Let − 1
2 ≤ s ≤ − 1

4 and T > 0. Then, there exists
r > 0 such that for any u0 ∈ Hs(T) and u1 ∈ Hs−2(T) with

∥u0∥s ≤ r, and ∥u1∥s−2 ≤ r

and any h ∈ L2(Hs−2), there exists a unique solution u of (1.4) such that

u ∈ C([0, T ], Hs(T)) ∩ Xs,b.

3. Linear control system

Once the well-posedness of the system is established, the study of the linear control
system is our next step. In this section, it is showed that a linear operator can define
a control driving system (1.4)–(1.5) from the initial state to the final state. The proof
strongly uses the spectral decomposition studied in Sect. 2.1, which allows to manage
the terms in a simpler way.

PROPOSITION 8. Let s ∈ R and T > 0. There exists a bounded linear operator

/ : (Hs
o × Hs−2)2 → L2(Hs−2)

such that for any y⃗0 := (u0, u1) ∈ Hs
o × Hs−2 and y⃗T := (u0T , u1T ) ∈ Hs

o × Hs−2,
the control defined by h := /(y⃗0, y⃗T ) drives the solution of

d y⃗
dt

= Ay⃗ + Bh, y⃗(0) = y⃗0, (3.1)

to y⃗(T ) = y⃗T . Moreover, there exists C > 0 such that for any y⃗0, y⃗T ∈ Hs
o × Hs−2,

we have

∥/(y⃗0, y⃗T )∥L2(Hs−2) ≤ C∥(y⃗0, y⃗T )∥(Hs×Hs−2)2 . (3.2)



1510 E. Cerpa and I. Rivas J. Evol. Equ.

Proof. Let y⃗0, y⃗T ∈ Hs
o × Hs−2 and write them using the decompositions

y⃗0 =
(
u0
u1

)
= β0φ⃗0 +

∑

n∈Z∗

(
βn+φ⃗n+ + βn−φ⃗n−

)
,

y⃗T =
(
u0T
u1T

)
= γ0φ⃗0 +

∑

n∈Z∗

(
γn+φ⃗n+ + γn−φ⃗n−

)
.

By previous computations, we can write the solution of (3.1) at time T as

y⃗(x, T ) = β0eλ0T φ⃗0(x)+
∑

n∈Z∗
eλnT (βn+φ⃗n+(x)+ βn−φ⃗n−(x))

+
∫ T

0
α0(t)eλ0(T−t)dt φ⃗0(x)+

∑

n∈Z∗

∫ T

0
eλn(T−t)αn+(t)dt φ⃗n+(x)

+
∑

n∈Z∗

∫ T

0
eλn(T−t)αn−(t)dt φ⃗n−(x) (3.3)

with

α0(t) =
∫

T
g(x)h(x, t) dx, αn±(t) =

∫

T
g(x)h(x, t)φ(2)

n±(x) dx

where for a vector q⃗ , we denote q(2) its second component.
Looking at each component, we see that the problem we want to solve is to find

functions α0(t),αn±(t) such that

β0 +
∫ T

0
α0(t)dt = γ0e−λ0T , (3.4)

βn− +
∫ T

0
e−λn tαn−(t)dt = γn−e−λn−T , (3.5)

βn+ +
∫ T

0
eλn tαn+(t)dt = γn+e−λn+T . (3.6)

In order to solve this moment problem, we need some special basis for L2(0, T ).
By Sect. 2.1, we have that, up to normalization,

φ
(2)
n− = e−inx and φ

(2)
n+ = einx .

If we define pn(t) = eλn t , then P ≡ {pn}n∈Z forms a Riesz basis for its closed span,
PT in L2(0, T ). By [8] there existsQ ≡ {qn}n∈Z, the unique Riesz basis dual to P in
PT . Thus, we have

∫ T

0
q j (t)pn(t)dt = δnj , −∞ < j, n < ∞. (3.7)
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Using the basisQ, we look for the control h, driving system (3.1) from y⃗0 to y⃗T , in
the form

h(x, t) = g(x)h0q0(t)+
∑

j∈Z∗
q j (t)g(x)

(
h j−φ

(2)
j− + h j+φ

(2)
j+
)
. (3.8)

We are led to find the coefficients h0, hn±, for n ∈ Z. Plugging (3.8) into (3.4), we
obtain initially for n = 0,

γ0e−λ0T − β0 =
∫ T

0
α0(t)dt =

∫ T

0

∫

T
g(x)h(x, t)dxdt

=
∫ T

0

∫

T
g2(x)h0dxdt = h0T

∫

T
g2(x)dx,

and then for n ∈ Z∗

γn−e−λnT − βn− =
∫ T

0

∫

T
h(x, t)g(x)φ̄(2)

n−(x)dx e−λn tdt

=
∫

T
g2(x)h0

∫ T

0
e−λn tq0(t)φ̄

(2)
n−(x)dx

+
∫

T
g2(x)

∑

j∈Z

∫ T

0
e−λn tq j (t)dt

{
h j+φ

(2)
j+(x)+ h j−φ

(2)
j−(x)dx

}
φ̄
(2)
j−(x)dx

= hn+
∫

T
g2(x)φ(2)

n+(x)φ̄
(2)
n−(x)dx + hn−

∫

T
g2(x)φ(2)

n−(x)φ̄
(2)
n−(x)dx

= hn+bn+ + hn−a

and

γn+e−λnT − βn+ =
∫ T

0

∫

T
h(x, t)g(x)φ̄(2)

n+(x)dxe
−λn tdt

=
∫

T
g2(x)h0

∫ T

0
e−λn tq0(t)φ̄

(2)
n+(x)

+
∫

T
g2(x)

∑

j∈Z

∫ T

0
e−λn tq j (t)dt

{
h j+φ

(2)
j+(x)+ h j−φ

(2)
j−(x)dx

}
φ̄
(2)
n+(x)dx

= hn+
∫

T
g2(x)φ(2)

n+(x)φ̄
(2)
n+(x)dx + hn−

∫

T
g2(x)φ⃗(2)

n−(x)φ̄
(2)
n+(x)dx

= hn+a + hn−bn−
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where we are considering

a :=
∫

T
g2(x)φ(2)

n+(x)φ̄
(2)
n+(x)dx =

∫

T
g2(x)φ(2)

n−(x)φ̄
(2)
n−(x)dx = 1

2π

∫

T
g2(x)dx,

bn+ :=
∫

T
g2(x)φ(2)

n+(x)φ̄
(2)
n−(x)dx = 1

2π

∫

T
g2(x)e2inxdx,

bn− :=
∫

T
g2(x)φ(2)

n−(x)φ̄
(2)
n+(x)dx = 1

2π

∫

T
g2(x)e−2inxdx .

We define

ρ0 = γ0e−λ0T − β0, ρn− = γn−e−λnT − βn−, ρn+ = γn+e−λnT − βn+

to write the systems

ρ0 = Th0a,

ρn+ = hn+a + hn−bn−, (3.9)

ρn− = hn+bn+ + hn−a,

that we should solve in order to find the control h. The determinant of each system
(3.9) is (bn+bn− − a2), which is not zero and then it allows to compute the solution

h0 =
ρ0

Ta
, hn+ = ρn−bn+ − ρn+a

bn+bn− − a2
, and hn− = ρn+bn− − ρn−a

bn+bn− − a2
.

Now, we have to prove that the control h is well-defined as an element in the space
L2(0, T ; Hs−2(T)). To do that, we estimate its norm as done in [13]. Let us consider
the expansion of each g(x)φ(2)

n± as follows

g(x)φ(2)
n± = an±0 +

∑

j∈Z∗

(
an±j+φ

(2)
j+ + an±j−φ

(2)
j−
)

where the coefficients are given by

an±0 =
∫ π

−π
g(x)φ(2)

n±(x)dx,

an±j+ =
∫ π

−π
g(x)φ(2)

n±(x)φ j+(x)(2)dx,

an±j− =
∫ π

−π
g(x)φ(2)

n±(x)φ j−(x)(2)dx .

Plugging this decomposition in (3.8), we obtain that the control can be written as

h(x, t) = φ
(2)
0 (x)

(

a00h0q0(t)+
∑

n∈Z∗
an+0 hn+qn(t)+

∑

n∈Z∗
an−
0 hn−qn(t)

)

+
∑

j∈Z∗
φ
(2)
j+(x)

(

a0j+h0q0(t)+
∑

n∈Z∗
an+j+hn+qn(t)+

∑

n∈Z∗
an−
j+hn−qn(t)

)
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+
∑

j∈Z∗
φ
(2)
j−(x)

(

a0j−h0q0(t)+
∑

n∈Z∗
an+j−hn+qn(t)+

∑

n∈Z∗
an−
j−hn−qn(t)

)

and taking the norm in L2(0, T ; H p(T)) for some p, we obtain

∥h(x, t)∥2L2(H p)
=
∫ T

0

∣∣∣∣∣a
0
0h0q0(t)+

∑

n∈Z∗
an+0 hn+qn(t)+

∑

n∈Z∗
an−
0 hn−qn(t)

∣∣∣∣∣

2

+
∑

j∈Z∗
(1+ j2)p

∣∣∣∣∣a
0
j+h0q0(t)+

∑

n∈Z∗
an+j+hn+qn(t)+

∑

n∈Z∗
an−
j+hn−qn(t)

∣∣∣∣∣

2

+
∑

j∈Z∗
(1+ j2)p

∣∣∣∣∣a
0
j−h0q0(t)+

∑

n∈Z∗
an+j−hn+qn(t)+

∑

n∈Z∗
an−
j−hn−qn(t)

∣∣∣∣∣

2

dt.

By applying Cauchy Schwarz inequality, we get

∥h(x, t)∥2L2(H p)
≤ C

{(
a00h0

)2
+
∑

n∈Z∗

(
an+0 hn+

)2 +
∑

n∈Z∗

(
an−
0 hn−

)2

+
∑

j∈Z∗
(1+ j2)p

[(
a0j+h0

)2
+
∑

n∈Z∗

(
an+j+hn+

)2
+
∑

n∈Z∗

(
an−
j+hn−

)2
]

+
∑

j∈Z∗
(1+ j2)p

[(
a0j−h0

)2
+
∑

n∈Z∗

(
an+j−hn+

)2
+
∑

n∈Z∗

(
an−
j−hn−

)2
]⎫⎬

⎭

or equivalently

∥h(x, t)∥2L2(H p)
≤ C

⎧
⎨

⎩(h0)
2

⎡

⎣c(a00)
2 +

∑

j∈Z∗
(1+ j2)p

((
a0j+

)2
+
(
a0j−

)2)
⎤

⎦

+
∑

n∈Z∗
(hn+)2

⎡

⎣
∑

j∈Z∗
(1+ j2)p

((
an+j+

)2
+
(
an+j−

)2)
+
(
an+0

)2
⎤

⎦

+
∑

n∈Z∗
(hn−)2

⎡

⎣
∑

j∈Z∗
(1+ j2)p

((
an−
j+
)2

+
(
an−
j−
)2)

+
(
an−
0

)2
⎤

⎦

⎫
⎬

⎭ (3.10)

where C > 0 bounds uniformly the L2-norms of functions {q j } j∈Z. Notice that due
to the form of

{
φ
(2)
j±
}
j∈Z, we obtain, for generic indices n, j ∈ Z, that

∣∣a j
n
∣∣ =

∣∣∣
∫

T
g(x)φ(2)

j (x)φ̄(2)
n (x) dx

∣∣∣ ≃
∣∣a0n− j

∣∣.
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Using this, we obtain
∑

j∈Z
(1+ | j |)2p|a j

n |2 =
∑

j∈Z
(1+ | j |)2p|a0n− j |2

=
∑

j∈Z
(1+ |n + j |)2p|a0j |2

≤ C(1+ |n|)2p
∑

j∈Z
(1+ | j |)2p|a0j |2

≤ C(1+ |n|)2p∥g∥2p.

With the latter estimate, we can go back to (3.10) to get

∥h∥2L2(H p)
≤ C∥g∥2p

(

(h0)2 +
∑

n∈Z∗
(1+ |n|)2p[(hn+)2 + (hn−)2]

)

≤ C∥g∥2p
(( ρ0

Ta

)2
+
∑

n∈Z∗
(1+ |n|)2p

[∣∣∣
ρn−bn+ − ρn+a
bn+bn− − a2

∣∣∣
2

+
∣∣∣
ρn+bn− − ρn−a
bn+bn− − a2

∣∣∣
2]
⎞

⎠

≤ C∥g∥2p
(

(β0)
2 + (γ0)

2 +
∑

n∈Z∗
(1+ |n|)2p

[
(βn+)2 + (βn−)2 + (γn+)2 + (γn−)2

]
⎞

⎠

≤ C∥g∥2p(∥u0∥p + ∥u1∥p), (3.11)

where the constantC varies line to line. In particular, the constantC bounds uniformly
the quantities 1

(bn+bn−)−a2 . This is possible because the terms (bn+bn−) converge to
zero, as they are the coefficients in the Fourier decomposition of g = g(x).
If we take p = s, since u0 ∈ Hs and u1 ∈ Hs−2, then (3.11) makes sense. The

existence of the control h in the space L2(0, T ; Hs(T)) and estimate (3.11) end the
proof of Proposition 8. "

4. Nonlinear control system

As a final step, the controllability for the nonlinear system is proved. The integral
equation form for the nonlinear Boussinesq equation (1.4)–(1.5) can be written as

u(t) = θT (t)
(
W0(t)u0 +W1(t)u1 +

∫ t

0
W1(t − t ′)gh(t ′)dt ′

+
∫ t

0
W1(t − t ′)N (u)xx (t ′)dt ′

)
. (4.1)
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Thus, we see that we have to prove the existence of u satisfying (4.1) and

u(x, 0) = u0, u(x, T ) = u0T , ut (x, 0) = u1, ut (x, T ) = u1T .

For any u, we define

w(t, u) :=
∫ t

0
W1(t − t ′)N (u)xx (t ′)dt ′, (4.2)

and using Proposition 8 for final state (u0T , u1T ) ∈ Hs
o × Hs−2, we choose

hu = /T

(
0, 0, u0T − w(T, u), u1T − wt (T, u)

)

From (4.1), we define the map 3 : Xs → Xs as

3(u) = θT (t)
(
W0(t)u0 +W1(t)u1 +

∫ t

0
W1(t − t ′)g(x)hu(t ′)dt ′

+
∫ t

0
W1(t − t ′)N (u)xx (t ′)dt ′

)
. (4.3)

The reader should notice that it is enough to show that 3 is a contraction in a space
XT
b,s (and consequently has a fixed point) to obtain the exact controllability of the

system (1.4)–(1.5).
From Lemmas 2 and 3 (when the hypothesis are satisfied), we obtain

∥3(u)∥XT
s,b

≤ C
(
∥u0∥s + ∥u1∥s−2 + ∥ghu∥XT

s,b′
+ ∥N (u)∥XT

s,b′

)

for − 1
2 ≤ b′ ≤ 0 ≤ b ≤ b′ + 1. Additionally, from (3.2), we get

∥ghu∥XT
s,b′

≤ C
(
∥u0∥s + ∥u1∥s−2 + ∥u0T ∥s + ∥u1T ∥s−2 + ∥w(T, u)∥s

+∥wt (T, u)∥s−2

)
.

For the linear terms one has ∥ f ∥X s ≤ C∥ f ∥Xs,b for any f ∈ Xs,b (see [7, Lemma
2.1]), and together with Lemmas 2 and 3, we have

∥w(T, u)∥s ≤ ∥
∫ T

0
W1(T − t ′)(N (u))xx (t ′)dt ′∥s

≤ sup
[0,T ]

∥
∫ t

0
W1(t − t ′)(N (u))xx (t ′)dt ′∥s

≤ ∥
∫ T

0
W1(t − t ′)(N (u))xx (t ′)∥Xs,b

≤ C∥(N (u))xx (t ′)∥Xs,b′

≤ C∥u∥2
XT
s,b′

≤ C∥u∥2
XT
s,b

(4.4)
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for the last line, we are taking into account that Xs,b is continuously embedded in
Xs,b′ for b′ < b. Taking the derivative with respect to time in (4.2), when χ[0,t] is the
characteristic function in [0, t] and δt is the Delta Dirac function centeblack in t , we
obtain

wt (t, u) =
d
dt

[∫ T

0
χ[0,t]W1(t − t ′)

(
N (u(t ′))

)
xx (t

′)dt ′
]

=
∫ T

0
δt (t ′)W1(t − t ′)

(
N (u(t ′))

)
xx (t

′)dt ′

+
∫ t

0
W0(t − t ′)

(
N (u(t ′))

)
xx (t

′)dt ′

=
∫ t

0
W0(t − t ′)

(
N (u(t ′))

)
xx (t

′)dt ′. (4.5)

Following the previous computation and taking into account that Xs,a1 is continu-
ously embedded in Xs,a2 for a2 < a1, we obtain

∥wt (T, u)∥s−2 ≤ sup
[0,T ]

∥
∫ t

0
W0(t − t ′)

(
N (u(t ′))

)
xx dt

′∥s−2

≤ ∥
∫ T

0
W0(t − t ′)(N (u(t ′)))xxdt ′∥Xs−2,b

≤ C∥(N (u))xx∥Xs−2,b′

≤ C∥u∥2
XT
s−2,b′

≤ C∥u∥2
XT
s,b
. (4.6)

Therefore, from (4.4), (4.5) and (4.6), the norm of (4.3) can be bounded as

∥3(u)∥XT
s,b

≤ C
(

∥u0∥s + ∥u1∥s−2 + ∥u0T ∥s + ∥u1T ∥s−2 + ∥u∥2
XT
b,s

)
.

For R > 0, we denote BR the ball of radius R and center 0 in Xs,b, i.e.,

BR = {u ∈ XT
s,b, ∥u∥XT

s,b
< R}

and we obtain

∥3(u)∥XT
s,b

≤ C∥u0∥s + C∥u1∥s−2 + C∥u0T ∥s + c∥u1T ∥s−2 + cR2.

If δ > 0 and R > 0 are selected such that

4Cδ + CR2 ≤ R and CR <
1
2

we obtain that the image of the map (4.3) stays in the ball BR , i.e.,

∥3(u)∥XT
s,b

≤ R

for ∥u0∥s ≤ δ, ∥u1∥s−2 ≤ δ, ∥u0T ∥s ≤ δ and ∥u1T ∥s−2 ≤ δ.
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Let us show that 3 in (4.3) is a contraction. Taking u, v ∈ BR

∥3(u) − 3(v)∥XT
s,b

≤ ∥
∫ t

0
W1(t − t ′)g(x)/(0, 0,−w(T, u)+ w(T, v),

−wt (T, u)+ wt (T, v)))(t ′)dt ′)∥XT
s,b

+ ∥
∫ t

0
W1(t − t ′) (N (u) − N (v))xx (t

′)dt ′)∥XT
s,b
.

In a similar way as before, by Lemma 3,

∥3(u) − 3(v)∥XT
s,b

≤ ∥g(x)/(0, 0,−w(T, u)+ w(T, v),−wt (T, u)

+wt (T, v))∥XT
s,b′

+ ∥(N (u) − N (v))xx∥XT
s,b′

≤ ∥w(T, u) − w(T, v)∥XT
s,b′

+ ∥wt (T, u) − wt (T, v)∥XT
s,b′

+ ∥(N (u) − N (v))xx∥XT
s,b′

≤ ∥u − v∥XT
s,b

+ ∥(N (u) − N (v))xx∥XT
s,b′

. (4.7)

Since this estimate (4.7) depends on the nonlinear term,weanalyze the three possible
cases. If N (u) = u2,

∥u2 − v2∥XT
s,b

≤
(
∥u∥XT

s,b
+ ∥v∥XT

s,b

)
∥u − v∥XT

s,b
(4.8)

≤ CR∥u − v∥XT
s,b

≤ 1
2
∥u − v∥XT

s,b
.

For N (u) = u2 the estimate follows directly from (4.8). Finally, if N (u) = uū,

∥uū − vv̄∥XT
s,b

= ∥u(ū − v̄) − v̄(v − u)∥XT
s,b

=
(
∥u∥XT

s,b
+ ∥v∥XT

s,b

)
∥u − v∥XT

s,b

≤ 1
2
∥u − v∥XT

s,b
.

Therefore, 3 is a contraction on BR . Thus, we proved the existence of a unique fixed
point u ∈ BR . This fixed point u is the controlled solution of the integral equation
(4.1), which ends the proof of Theorem 1.
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