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Abstract

This article considers a system coupling an ordinary differential equation with a wave equation through its boundary data.
The existence of a small parameter in the wave equation suggests the idea of applying a singular perturbation method to get
the stability of the full system by analyzing the stability of some appropriate subsystems given by the method. However, for
infinite-dimensional systems it is known that in some cases this method does not work. Indeed, you can not be sure of the
stability of the full system even if the given subsystems are stable. In this paper we prove that the singular perturbation method
works for the system under study. Using this strategy we get the stability of the system and a Tikhonov theorem, which is the
first of this kind for systems involving the wave equation. Simulations are performed to show the applicability of our results.

I. INTRODUCTION

The singular perturbation method (SPM) is a classical tool to study stability properties of coupled systems where there
appear some small parameters. Roughly speaking, the idea is to deduce the stability of the original system by using the
behavior of the system when those parameters are chosen to be zero. Depending on the applications and the particular
equations, the parameters can play the role of different time scales allowing the modeling of different physical situations.
As an example we can mention the Saint-Venant—Exner equations described in [12] and in [2, Section 1.5]. This hyperbolic
system is used to study the dynamics of the flow in a reach, coupled with the sediment dynamics. The sediment dynamics
has, by nature, a very slow dynamic with respect to the velocity flow in the fluid. Thus this model is a singularly perturbed
hyperbolic system, as studied in [15] (see also [8] for control results on this system). Other examples of systems with
different time scales appear when considering infinite-dimensional control systems with dynamics at the boundaries, as
introduced for instance in [2, Section 3.4]. One naturally obtains partial differential equations (PDE) coupled to ordinary
differential equations (ODE) at different time scales. In [21, Chapter 2] a slow ODE coupled with a fast PDE appears, and
in [18] a fast ODE coupled with a slow PDE is studied.

As usual, the literature on singularly perturbed systems has first grown up for finite-dimensional systems (see in particular
the seminal works [11], [13]). For infinite-dimensional systems we find [9], [10] where delay systems are studied. Closer
to the present contribution, let us cite [3] where a parabolic singularly perturbed PDE is considered. Regarding coupled
hyperbolic PDEs, we mention [19] and [20] dealing with conservation laws and balance laws, respectively. In both papers,
Lyapunov function approaches are useful to analyze stability properties.

However, the validity of the SPM in an infinite-dimensional framework depends on the system. Even linear systems can
show unexpected behavior. This was shown in [18] for a first order hyperbolic system with different time scales and in
[4] for a second order hyperbolic system coupled to a ODE. In these papers there are examples of unstable systems for
which the SPM does not work. More precisely, the SPM says that we can deduce the stability of the full system (for small
parameters) when some particular subsystems (reduced and boundary layer systems) are stable. In [18], [4] we find exemples
of unstable full system giving stable subsystems. Thus, we can not deduce the stability of the full system by applying a
SPM.

The main goal of this paper is to establish stability and Tikhonov results for an infinite-dimensional system by applying
the SPM.

We consider as a model the wave equation coupled to an ordinary differential equation through boundary data (see [22],
[71, [1] for similar couplings). More precisely, our system is given by

2wy (t, 1) — Wae(t,x) =0, t>0,0<2 <1,

w(t,0) = cz(t), t>0, |
wo(t, 1) = —edwy(t,1),  t>0, M
2(t) = az(t) + bw(t, 1), t>0,

with a, b, ¢, d constant values and a positive value € > 0. When ¢ > 0 is small then the dynamics (1) have two different
time scales and couplings. We consider usual initial condition for (1) given by w® in H'(0, 1), w! in L?(0,1) and 2° in R,
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that is

w(0,z) =w'(z), 0<z<I1,
wt(O r)=wl(z), 0<z<l, 2)
2(0) = 2°.

It is important to note here that the stability of this system can not be deduced from the results in [18]. Even if one-
dimensional wave equations can be written in terms of first-order hyperbolic equations, system (1) presents troubles with
the boundary conditions. By rewriting system (1) in Riemann coordinates, we get a system of conservation laws coupled
with an ODE. However, in Riemann coordinates, the boundary conditions obtained from second and four lines in (1) are
different to the ones in [18]. See Appendix A for the precise writing of system (1) in Riemann coordinates. In this way, we
can see that the results in [18] do not apply for (1) and consequently our developments are a true contribution with respect
to the existing literature in the topic.

When applying SPM, we have to obtain what are called the reduced and the boundary layer systems. In fact, as it will
be explained in Section II below, the reduced system is

4y =(a+bc)z, t=>0, (3)
while the boundary layer system for 7 = t/¢ is

wTT(Tax)fmmm(T,m):07 7’20,O<l’<17

w(r,0) =0, T2>0, 4)
Wy (1,1) = —dw, (1, 1), T>0.
We consider usual initial condition for (3) and (4) given by w° in H*(0,1), @' in L?(0,1) and z° in R, that is
(0, ) P(z), 0<z<l, 5
wt(O r)=w'(z), 0<z<l1
and
2(0) = 2°. (6)

Let us notice that the stability of the reduced system (3) is equivalent to (a + bc) < 0 and the stability of the boundary
layer (4) is equivalent to d > 0. Thus, our first result is concern with the stability of system (1) when the subsystems are
stable and ¢ is small enough. It is worth to mention that Theorem 1 below appeared in the conference paper [4] but we give
here a different proof. The used approach allows to unify the stability analysis in Theorem 1 with the Tikhonov result in
Theorem 2.

Theorem 1: Let d > 0 and a,b, ¢ such that a + be < 0. There exists €* > 0 such that for any € € (0,e*) the full system
(1) is exponentially stable, that is, there exists Co > 0 such that, for all (w®,w',2%) in H'(0,1) x L?(0,1) x R satisfying the
compatibility condition w®(0) = cz°, the solution z € C([0,+00)) and w € C°([0,+00); H'(0,1))NC* ([0, +00); L*(0,1))
to (1)-(2) satisfies, for all t > 0,

(atbe)
[[(w(t), we(t), 2(E) |1 0,1y x 20,1y xr < Coe™ 2 [[(w®,w, 2°) [ 51 (0,1)x £2(0,1) xR

The second result of this paper states that the SPM gives us a Tikhonov approximation: the dynamics of (1) can be
approximated by those of the boundary layer system (4) and of the reduced system (3).

Theorem 2: Let d > 0 and a,b, ¢ such that § := a + bc+ \f|bc\ < 0. There exists €* > 0 such that for any € € (0,e*),
Yin HY(0,1), w! in L*(0,1), 2 0 in R, w° in H*(0,1), @' in L?(0,1), 2° in R satisfying the compatibility conditions
w%(0) = 2% w°(0) = 0, and smallness conditions

lw® = 2% —@°|| r10,1) + [lw' = (a+be)ez® — w200y + 27 — 2°] = O(e?)
10 10,1y + @ | 22000y = O(E*?) , [2°] = O(%?),
the solution w in C([0,00); H(0,1)) N C*([0,00); L?(0,1)) and z in C1([0,00)) to (1)-(2) satisfies, for all t >0,
[w(t) = ez(t) — @(t/e) | (0,1 + llwe(t) = e(a +be)z(t) — @ (t/€)l|12(0,1) = € O(e), @)
and
[2(8) = 2(t)| = e O(*?), @®)

where w in C([0,00); H1(0,1)) N C([0,00); L?(0,1)) is the solution to (4)-(5) and % in C*(]0,00)) is the solution to
(3)-(6).



Note that the assumptions on coefficients a, b, ¢ are more restrictive in Theorem 2 than in Theorem 1 since & > a + bc.
Thus, the exponential decay rate in Theorem 2 is weaker than the one in Theorem 1. More importantly, we note that regarding
the solution w there is a O(£?) in the initial condition hypothesis and a O(¢) in the conclusions of Theorem 2. This is due
to the fact that our Lyapunov function depends on €. See the proof of Theorem 2 for more details.

The remaining part of the paper is organized as follows. In Section II we prove Theorem 1. Section III is devoted to the
proof of Theorem 2. Section IV contains numerical simulations illustrating the stability and the Tikhonov approximation
stated in our theorems. Finally, we give in Section V some conclusions. Appendix A shows as our system is written in
Riemann coordinates while Appendix B is concerned with an important technical lemma.

II. STABILITY ANALYSIS

The goal of this section is to prove Theorem 1. We apply the SPM, which leads us to find some appropriate subsystems
called the reduced order system and the boundary layer system. Theorem 1 makes sure that the full system is stable when
the previous subsystems are stable and the parameter € is small enough.

To formally compute the reduced order system, let ¢ = 0 in (1). We get from the boundary condition at x = 1 that
wg (¢, 1) = 0 which gives w, = 0 when using w,, = 0 (coming from the PDE). From the boundary condition at = = 0, it
follows that w(t, ) = cz(t) for all ¢ > 0 and for all « € (0, 1). Thus, the reduced order system is

dz=(a+bo)z, t=>0. 9)

Let us compute now the boundary layer system. We introduce 7 = ¢/c and the new variable w(7,z) = U)(T x) — cz( ).
We compute —Tu? = ddTw - cgjtz = dTw by letting ¢ = 0 and by using the z dynamics. Moreover, dde = ddTQw
d‘iw = dd w, and 2 w = d‘i2 w. Therefore w,, — w,, = 0. To compute the boundary conditions for the variable w, let us
note that w, (7, 1) = wy(7,1) = —dew(1,1) = —dw,(7,1) = —dw,(7,1) by approximating ¢ by 0 in the last equation.

To sum up, the boundary layer system is written as
Wrr (T, 2) — Wee(T,2) =0, 7>0,0<z <1,
w(r,0) =0, 7> 0, (10)
Wy (T, 1) = —dw, (7, 1), T > 0.
The boundary layer system is known to be exponentially stable. In fact, this system is called a passive damped wave

equation. As the following computation is used a couple of times later, we explain it here. Let us consider the following
Lyapunov function

1 1
Vl(w):/ eﬂz(wx+wT)2dx+/ e M (wy — 1wy )3dr, (11)
0 0

with p > 0 to be fixed later. This Lyapunov function appeared for the wave equation in [17] and is related to a Lyapunov
function for first-order hyperbolic equations studied in [6].

Along the solutions to (10), it holds

%Vl = 2f0 et ( wT + Wy ) (Wrr + Wer )d
+2f e (Wy — W) (Wry — Wyr)da
= 2 fo M (Wy + Wy ) (Wag + Wer )dT
—2f e (W — Wy ) (Wyr — Wy )d |
= —/Lf M (W, + Wy )2 dx
+[e (wr + Wy) ]ii(lJ
—H fol e (W — Wy ) da
—le™ (W, — wm)Q]iitl) .
Now, note that the boundary condition in the second line of (10) implies that w,(7,0) = 0 and thus, for all 7 > 0,
[ (Wr + )?)(7,0) — [ (wr — @,)?](7,0)
= w(r,0) — w2(7,0) = 0.

Therefore, we get

d
TV =~V e (@ (1) + (1) — e (@ (7 1) — (7, 1))%
and thus with the boundary condition in the last line of (10):
d
Evl = —uVi + e (w,(1,1) — dw,(7,1))?

e, (r, 1) + day (1, 1))?
S (e“(l —d? —eh(1+ d)Q)wT(T, 1)2 . (12)



We obtain the exponential stability by choosing y such that e#(1 — d)? < e #(1 + d)?, which is possible due to d > 0.
Let us now define the following variable w = w — cz. We compute successively

wy = W+ (a+be)ez + bew(t, 1)
Wit = ﬁ)tt + (abc + b202)u~)(t, 1)

+bcivy (t, 1) + (a®c + 2abc® + b?c®)z
Wy = Wy,

Therefore we get the following dynamics, equivalent to (1)

24y — Wy + £2(abe + b2 (t, 1)
+e2bewy (t, 1) + e2(a?c + 2abc? + b*c3)z(t) = 0,
@(t,0) = 0, (13)
Wy (t,1) = ebedw(t, 1) — dew(t, 1) — ed(a + be)cz(t),
£(8) = (a+bo)2(t) + biv(t, 1).

We are now in position to prove Theorem 1 by studying system (13).
Proof: 1In order to prove that system (13) is exponentially stable, we apply Lemma 1 in Appendix B. More precisely,
we use (23) with A = —(a?c + 2abc® + b?c®), B = —(abec + b*c?), C = —bc, D = —d, E = —d(a + bc)e, F = bed,
G=a+be, H=b M =0, di(t) = da(t) = ds(t) = 0, for all ¢ > 0. Thus, defining V (w0, z) = V1 (0) + Va(z), with

1 1
Vi= / e (W, + ewt)zdx + / e M (W, — Eﬁ)t)2d:v
0 0

and V5 = 22, we get that, along the solutions to (13),

d 2e2B2C D|+1 C1H?
—VS[—H—&-e“(m+n2+m3)+!+3501F2(e“+e_“)(1+‘ L+ )+ . }Vl
dt 3 P} R5 K6
2e2 A2 Dl+1
+ |26 + kg + w7 + 2 - 3eBR(eh 4 o) (1 + | L+ )| ve
1 5
2 - 2 - 2eC? 2
+ [Ee“(D—i— 1)2 — ce (D —1)% + 3eks (e’ + e #)(|D| + 1) + ]Bt(t,l) .
for all positive values x;, ¢ = 1,...,7.

Note that, under the assumptions of Theorem 1, D < 0 and consequently —(D — 1)? 4+ (D + 1)? < 0. Now letting
1I(D+1)? = (D -1y

K5 = 14
° T 12 (ID|+1) 19
we get the existence of p* such that, for all p in (0, u*],
e"(D+1)% —e (D —1)® + 3k5(e" + e *)(|D]| + 1) < 0.
Then for any positive k3 we get the existence of £* such that, for all £ in (0,e*),
5 _ 9 _ 2e2C?
eet(D+1)° —ee (D —1)* 4 3ers(e’ +e7#)(|D|+1) + - <0.
3
In this way, we obtain, along the solutions to (13),
d 2e2B2C D|+1 C1H?
—VS[—H—#e“(m+/£2+/£3+3/<4)+71+3601F2(e“+e*”)(1+‘ | )+ ! }Vl
dt € K2 K5 K6
262 A? D|+1
+ [2G+I€6+l€7+ 1 +35E2(e“+e*#)(1+%)}v2. (15)
1 5

We make negative the factor multiplying V2 in (15). As G < 0, A = O(1), D = O(1), E = O(1), for any positive value
k1, there exist sufficiently small values kg > 0, k7 > 0 and £*, such that for all € in (0,*) (up to reducing €*) and for all
w in (0, ), it holds

2e2 A2 D 1
EA L sep2(er 4 ey + PLE
K1 K5

2G+I€6+l€7+

3
)<§G<0.

Remark 1: Of course, in previous line the factor % multiplying G can be changed to any factor in the interval (0,2).
We can get a factor as near to 2 as we want. )



Thanks to the term —p /e we can make negative the factor multiplying V7 in (15). As B =0(1), D = O(1), F = O(1),
and H = O(1), for any positive value k2 > 0 we have that for all € in (0,e*) (up to reducing €*) and for all p in (0, *),
it holds

2623201 ‘D‘ —|— 1 01H2 1%

—ﬁ—&—e“(m—&—fig+/£3—|—3/£4)+7+3€C1F2(e“+6_”)(1+ )+ < ——. (16)
€ Ko K5 K¢ 2e

We arrive in this way to

d

s 3 . uo3 3
V) < =L, 2aQV- < — £ 2 174 < @V
n (t) < 9% 1(t)—|—2G 0 mln{2€72G} (t) 2G (t) ,

for all € € (0,e*) with a sufficiently small positive value £*.

Therefore, the function V' decreases to zero exponentially fast, along the solutions to (13). Note that this exponential
decreasing for the Lyapunov function V (1, z) is equivalent, up to a factor €2, to the exponential decreasing of the usual
norm in H'(0,1) x L?(0,1) x R thanks to the fact that @ (¢, 0) = 0.

This concludes the proof of Theorem 1. [ ]

III. TIKHONOV THEOREM

Until now we have seen that the SPM gives us the reduced order system and the boundary layer, whose stability imply
the stability of the full system. The goal of this section is to prove Theorem 2, that uses the previous subsystems to give a
better approximation of the full system. The idea is not only saying that the system goes to zero but trying to explain how
it does when the parameter ¢ is small enough.

Let us introduce, for all ¢ > 0 and z in [0, 1],

and

From (1) and (9), we get

Q.
—~
~
~

az(t) +bw(t,1) — (a + be)z(t)
(a + be)a(t) — bez(t) + bw(t, 1)
(a+be)a(t) +bB(t, 1) + bw(L,1).

e’

Moreover, we compute successively
1 t
Bi(t,x) = we(t, z) — c(a+ bc)z — ng(g,x) ,
t

1
Ber(t, ) = wy(t,x) — cla + bc)22 - 5—2@”(; x) ,

Bo(t,7) = wal(t, 2) fwz(é,x) ,

d
an .

6mx(ta Sﬂ) = wmm(t»m) - wmm(g,x) .
Therefore, from (1) and (10) we get

€284t — Bow = —€2c(a + be)?z,
B(t,0) = c(2(t) — 2(1)), (17)
Ba(t,1) = —dewy(t, 1) + dw, (£, 1).

The last boundary condition of (17) is
Be(t,1) = —defi(t,1) — dec(a + be)zZ(t)

where the expression of 3; has been used. To sum up the dynamics of « and 3 can be rewritten as

525& - ﬂxa: = _520(0’ + bc)22(t)
B(t,0) = ca(?) (18)
B(t,1) = —deB:(t,1) — dec(a + bc)z(t)
a(t) = (a+bc)a(t)+bB(t,1) 4+ bw(L,1).

We are now in position to prove Theorem 2 by studying stability of system (18).



Proof: Let us apply Lemma 1 with A=B=C=F=F=0,D=—-d,G=a+bc, H=b, M =c,
di(t) = —c(a + be)*z(t),
do(t) = —cd(a + be)z(t),

and .
ds(t) = b@(gal)-

Therefore (24) holds along the solutions to (18) where V is defined by V (8, «) = V1(8) + Va(«) with

1 1
Vi = ne T t 2d he r t 2d
L(8) Ae(ﬁ+w)x+ée (Ba — £B,)de

and Va(a) = o?.

We select k;, . = 1,...,5 and k7 by adapting the proof of Theorem 1, and we get
d o2 2¢? D|+1 1
Ly < 06+ re+ 32Ty £ 2 a2 4 e + e+ P 2 - (6M25 n 7)613(75)2
dt K6 K4 K5 K7
2¢? 2 - D[ +1 2 2 1 2
< (2G +2V3|MH)V + ﬁ—dl(t) +3e(e” +e M) (1 + T)dz(t) + (6M e+ H—)dg(t) , (19)
4 5 7

with kg = /3| M H| (minimizing kg + 3M 25—:). Moreover, due to (9), it holds |2()| < e%*|z(0)| and we note that there
exists a constant value Cy > 0 such that
dy(t)? + da(t)? < Cae®9t2(0)2. (20)

Concerning d3(t), from (12) we can easily see that there exists C's > 0 such that, for all £ >0
ds(t)® < 036_%(”7170”H1(0,1) + [|@*] £2(0,1))* @2n

Inspecting the choices of k4 and k5 done in (16) and (14) respectively, we have that k4, = O(1), k5 = O(1) and
k7 = O(1). Note that 20 = 2G + 2/3|M H| where § in defined in the statement of Theorem 2. We first bound (19) using
(20)-21) to get

d ut
7V =20V + O(%)e*"2(0)* + O(e)e**2(0)* + O()e™ = (| @° 20,1y + 10" | £2(0,1))°

and then we integrate between O and ¢ to obtain (with § > G)

Vo< eN(V(0) + 2(0)* + (||TDOHH1(0,1) + HU_’1||L2(0,1))2),
< 626t0(53)

where we used the hypothesis on the initial conditions. We have now to come back to the norm. To do that we use that
there exists a positive constant Cy, not depending on ¢, such that

2 1 1
20 (Ifllm o+ lolzon) < [ e=(hateg?dos [ (s, —qfdo
0 0

From here we deduce Theorem 2. |

IV. NUMERICAL SIMULATIONS

In this section, we illustrate Theorems 1 and 2, by some numerical simulations. We apply a Lax-Friedrichs method [16]
to get the numerical solutions. The codes are available on [5].

Concerning Theorem 1, we simulate system (1) with a = —2, b = 1, ¢ = —2, and d = 0.5 and the initial conditions
w®(z) = 27 sin(27z), wl(x) = 2, for all x in (0,1) and 2" = w°(1)/c, so that the assumptions of Theorem 1 hold. Pick
€ = 0.1 for the time scale. We can check on Figure 1 (Left) that the Lyapunov function V (with ¢ = 0) in the proof of
Theorem 1 decreases exponentially fast to zero. We also see that the norm of the solution goes to zero. This is consistent
with the conclusions of Theorem 1 giving the exponential stability of the full coupled system.

To illustrate Theorem 2, we also compute the numerical solutions to the reduced system (3), and to the boundary layer
system (4) with the initial conditions z° = 29, w? = w® — ¢z, and w!(x) = w! — c(a+ be)z°, for all x in (0,1). We show
the norms of the Tikhonov approximations as given in (7). We compare a first approximation of w given by the reduced
system cZ(t) with a second approximation given by the sum of the reduced system and the boundary layer czZ(t)+w(t/e, x)).
We check on Figure 1 (Right) that the second approximation is better than the first one, specially for small times, which
is natural because the contribution of the boundary layer w(t/e,x) is relevant for small times. Thus, the interest of the
Tikhonov approximation is confirmed as stated in Theorem 2.
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Fig. 1. (Left) Time evolution of the Lyapunov function V' and the norm along the solution to (1). (Right) Time evolution of the norm of Tikhonov
approximations

V. CONCLUSIONS

In this paper we have considered an infinite-dimensional system coupling a wave equation with a linear ODE. Some small
parameters appear in the partial differential equation, which can be interpreted as having different time scales. Having in
mind what is known for finite-dimensional systems, it is natural to apply the singular perturbation method. However, this
does not always work in an infinite-dimensional framework as shown in recent literature. In this context, we prove here that
this kind of analysis can be performed for the system under study and we obtain stability and Tikhonov results. Our main
tool is the use of Lyapunov functions. Simulations illustrating our results are presented.

Interesting open problems arise. For instance, performing similar analysis for other infinite-dimensional systems, maybe
involving nonlinearities. Other possible research line is to relax the assumptions on the initial conditions in Theorem 2 with
respect to their dependence on €. This would ask for looking for a Lyapunov function not depending on ¢.

APPENDIX
A. Rewriting system (1) in Riemann coordinates

Denote vy (t,x) = ew(t, ) + wy(t, x), v2(t,x) = wy(t,x) — ewe(t,x), and Z(t) = 2(t). By differentiating the second
and the fourth line of (1), we obtain from (1) the following system, for all £ > 0, and for all 0 < =z < 1,

ev1(t, @) —viz(t, ) =0, evar(t, ) + v (¢, 2) = 0,
v1(¢,0) — va(¢,0) = 2ecZ(t),
U1 (ta 1) + U2(ta 1) = —dU1 (t7 1) + d’UQ(ta 1)7
Z(t) = aZ(t)+ £vi(t,1) — Loa(t, 1).
System (22) is a system of fast conservation laws coupled with an ODE. However, due to the presence of ¢ in the denominator

of the last line of (22) and of the presence of ¢ in the second line, it differs from the class of coupled systems of conservation
laws and ODE studied in [18]. Therefore the results in [18] do not apply to (22), as claimed in the Introduction.

(22)

B. A technical lemma and its proof

In this section, we prove a technical lemma that is instrumental for the proof of Theorems 1 and 2.
Lemma 1: Let ¢, A, B, C, D, E, F, G, H, M be constant values, and dy,ds,ds be functions in C([0,00)). Let us
consider the system
€28y — Buow = €2 Aat) +e2BB(t, 1) + 2CB4(t, 1) + e2dy (t),
B(t,0) = Ma(t),
5x(t, 1) = sDﬂt(t, 1) + EEa(t) + €Fﬂ(t, 1) + sdg(t),
a(t) = Ga(t) + HB(t, 1) + ds(1),

and the Lyapunov function candidate V (3,a) = V1(B) + Va(a), where Vo(a) = o and

(23)

1 1
Vi(8) = /O (B, + 2fy)?da + /O e12(8, — o) d.



Then, there exists Cy > 0 such that, for any positive values k;, i = 1,...,7, we have along all solutions to (23)

d
%V(B7 )_ [—§+6“(H1+H2+K3+K4)+

2:2B2C D|+1 C,H?
!+3501F2(e“+e*#)(1+¢)+6M2015H2+ !
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+ [ (D + 1) = e (D = 1) + 3o (e + ) (D] + 1) +
Proof: Along the solutions to (23), we compute

AVi(8) = Qf e’ (Bat + B4t)(Bx + €Bt)d
+2f e M (Byr — €Bit)(Be — eBy)dx
= 2 fo e,uz Eﬂact =+ 6%?)(ﬂx + 5ﬂt)d$
—2 [ e (—eBur + Bua) (Br — £Bi)der
+2(cAa(t) + eBB(t,1) + eCBi(t, 1) + eda (1)) [y (B, + ebs)da
—2(cAa(t) + eBB(t,1) + eCBe(t, 1) + edy(t)) fol e (B, — efy)dx

and thus, using integrations by parts,

%Vl(ﬂ) =

Jaie . @

’;f e (B, + efB)?dx
-t fo HE(Br — Eﬁt)2d$
+1 [e"(By 4+ B:)? — e (B —aﬁt)z]l
+2(eAa(t) + eBB(t,1) + eCB(t, 1) + edy (¢ fo eM(By + efy)dx
—2(cAa(t) + eBB(t,1) + eCB(t, 1) + edy (¢ fo e M (By — efy)da .

Now using the inequalities 2ef < % +kf? (e+ f+g)? <3(e? + f2 + ¢g?) (for any values e, f, and g and any positive
value k), and (23), we get

4y, (B8) < —LVi(B)+{ fo el (By + eBy)dz)? fo e M (By — efy)da]?} (k1 + ko + K3 + Ka)
+28f1 a(t)® + 28 2B 5(1, 1) + 25 C 2=2Lp(t, 1) + 28 dy(t)?
- [ (D+ 1)6,5(15 1) +eEalt )+5Fﬂ(t 1) +€d2( )2

n
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+2M?e2(Ga(t) + HB(t, 1) + ds(t))?
—EV1(B) + {e* fy ¥ (B + eBy)2dx + e [ e (B, — eBy)2da} (k1 + Ko + K3 + Ka)
(24 1 60262 )a(t)? + (2220 4+ 6M2eH? ) B(1,1)% + 220 6, (1, 1)° + 2 dy (1)
+eet{(D +1)2B:(t,1)? + (Ea(t) + FB(t, 1) + do(t))?
+2(Ea(t) + FB(t, 1) +do(t)(D + 1)B:(t, 1)}
—ee M{(D — 1)2B,(t,1)® + (BEa(t) + FB(t, 1) + da(t))?
+2(Ea(t) + FB(t,1) + da(t)) (D — 1) B4 (¢, 1)} + 6 M>ed3(t)?
&+ 8“(’"61 + Ko + K3 + Ka)|V1(B)
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2 dl( )2 + 6M2eds(t)? + 3e(e + e ) (1 + L) dy (1)2

[se“(D +1)% —ee (D — 1) + 3ens(e” + e ) (D] +1) + E)B,(t,1)?
for any positive values x;, @ = 1,...,5. Using first the Agmon inequality (see Appendix A in [14]) and one boundary
condition of 3 in (23), it holds

B(t,1)°
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B(t,0)% +2/B(t) || 20,1 1B ) £2(0,1) »

<
< M2a()? +1BO720,1) + 18 Oll72 0,1y - (25)



Moreover, with the Poincaré inequality (see again Appendix A in [14]) it holds, for any positive value & in (0, 1),

fol(ﬁ ) — B(t,0))2dz + 24(t,0) fo o(t,x) d$_6(t’0)2
< R + 20000 + KISy, — 500
< B8Ol + (&~ D802 + IO

1BNIZ2(0.1)

Thus letting x = 1/2 and one boundary condition of 8 in (23), it is deduced

18012200 < SN8:(B)l2201) + 2Ma(t)?

It follows with (25) that

1B(t,1)]* < CLVa(B) + 3M3a(t)?, (26)
with C; = (% + 1). Therefore, we get
d 2e2B2C D|+1
%Vl(ﬂ) < [*g + 6”(/11 + Ko + K3 + I<L4) + % + 3501F2(6p‘ + eiu)(l + %) + 6M201€H2]Vl(ﬂ)
2 5
2¢2 A2 D 1
+ { 3B (et e M) (1 4 ¢) +6M?*C1eG?
K1 K5
2¢2 B2 D|+1
+ ( S0 L 3eF2(et + e M) (1 + i) + 6M25H2)3M2]a(t)2
) Rs

22 D|+1
()2 + 3e(e + e (1 + IDI+1

ds(t)? + 6 M3eds(t)?
o . )da2(t)” + eds(t)
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+ [ee"(D +1)* —ee™™(D — 1) + 3ers(e” + e *)(|D] + 1) + 18:(t, 1) . (27)

Moreover, using the fourth line of (23), inequality (26) and 2fg < % + kg? (for any values f and g and any positive
value k), we have

FVe(a) = 2a(t)(Ga(t) + HB(L, 1) + d3(t))

2GVa(a) + 2Ha(t)B(t, 1) + 2a(t)ds(t)

2GVa(a) + i B(t, 1)2 + kea(t)? + kra(t)? + K%dg(t)Q

2G V(o) + —(Clvl(ﬁ) +3M3%a(t)?) + kea(t)? + rra(t)® + ds(t)?
(2G + g + 7 + 3M> )Wy (o) + SV (8) + Lda(t)?
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for any positive values kg and «7. Combining the previous inequality with (27) we readily obtain (24). This concludes the
proof of Lemma 1. [ ]
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