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Abstract

This paper studies the internal control of the Korteweg–de Vries–Burgers (KdVB) equation on a
bounded domain. The diffusion coefficient is time-dependent and the boundary conditions are mixed in
the sense that homogeneous Dirichlet and periodic Neumann boundary conditions are considered. The
exact controllability to the trajectories is proven for a linearized system by using duality and getting a
new Carleman estimate. Then, using an inversion theorem we deduce the local exact controllability to
the trajectories for the original KdVB equation, which is nonlinear.
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1 Introduction

The Korteweg–de Vries (KdV) equation appears in the nineteenth century with the works of Boussi-
nesq [5], Korteweg and de Vries [24], [29]. From a physical point of view, the KdV equation represents
a model for the motion of long water waves in channels of shallow depth, in which two different phe-
nomenon are presents, namely, nonlinear convection and dispersion. This interaction produces a wave
traveling at constant speed without losing its sharp, usually called soliton.

The study of the KdV equation from a control point of view began with the work of Russell [33] and
Zhang [36] in late 1980s. Both exact control problem and stabilization problem have been intensively
studied since then. For internal control of the KdV equation on a periodic domain, Russell and Zhang
[34] showed that the system is locally exactly controllable and exponentially stabilizable in the space
Hs(T) for any s ≥ 0. Their work was improved by Laurent, Rosier and Zhang [25] who showed that the
system is globally exponentially stabilizable and (large time) globally exactly controllable in Hs(T) for
any s ≥ 0. The study of the boundary controllability for the KdV equation on a bounded domain (0, L)
was started by Rosier [31] where he employed only one control input. Using compactness–uniqueness
arguments and the Hilbert Uniqueness method he first showed surprisingly that the linearized system
around the origin is exact controllable in the space L2(0, L) if and only if the length L of the spatial
domain does not belong to a set of critical values. Then assuming the length L of the spatial domain
is not critical, he showed the nonlinear system is locally exactly controllable in the space L2(0, L) by
using contraction mapping principle. If all three boundary controls are employed, Zhang [37] using a
different approach proved that the system is locally exactly controllable in Hs(0, L) for s ≥ 0 without
any restrictions on the spatial domain. When the linearized system is not controllable, nevertheless, one
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can still prove that the nonlinear system is locally exact controllable in the space L2(0, L) by using power
series expansion of the solutions (see [13, 9, 10]). Other related results can be found in [19] and [32].
Concerning the internal controllability for the KdV equation on a bounded domain with homogeneous
Dirichlet boundary conditions, the most recent work was done by Capistrano–Filho et al. in [7], where
the authors obtained some controllability results using an approach based on Carleman estimates and
weighted Sobolev spaces.

On the other side, the Burgers equation first appeared in 1940 as a simplified one–dimensional
model for the Navier–Stokes system [6]. Its controllability properties on bounded domains are certainly
different in each case (i.e., distributed controls, boundary control, initial value control). For instance, in
[22], Horsin studies the exact controllability on a bounded domain for the Burgers equation by means
of the return method [12]. In the case of boundary controllability with partial measurements, the work
[20] done by Imanuvilov and Guerrero shows that the exact controllability property does not hold. In
the context of distributed controls with Dirichlet and Neumann boundary conditions, the works by
Fernandez–Cara and Guerrero [15] and Marbach [28] addressed these problems.

As consequence of the union of the KdV and Burgers equations arise the Korteweg–de Vries–Burgers
equation (KdVB equation), which in our case has homogeneous Dirichlet boundary conditions and
periodic Neumann boundary conditions. More precisely, we consider the following system

yt + yxxx − ν(t)yxx + yyx = F (x, t) in (0, L)× (0, T ),
y(0, t) = y(L, t) = 0 in (0, T ),
yx(0, t) = yx(L, t) on (0, T ),
y(·, 0) = y0(·) in (0, L),

(1.1)

where y = y(x, t) represents the surface elevation of the water wave at time (0, T ) and space (0, L),
ν(t) := ν0 + ν̃(t) > 0, with ν0 > 0 and ν̃(t) ≥ 0 is the diffusion coefficient, F = F (x, t) is an internal
force and y0 is the initial datum. The system (1.1) can be viewed as a model of propagation of long
water waves in channels of shallow depth, whose solutions depend on the nonlinearity, dispersion, and
dissipation. Moreover, by introducing a variable coefficient ν(t), the KdVB equation (1.1) is useful to
describe cosmic plasmas phenomena [18], [27]. Respect to the boundary conditions, they appear in
order to symmetry the operator. Thus, studying the controllability of our system can help to build
for instance some feedback laws requiring that the underlying operator is skew-adjoint. Besides, we
can explicitly mention the difficulty appearing with these boundary conditions: the hidden regularity
L2(0, T ;H1(0, L)) is not implied by the third order term. That is the reason that the Laplacian is added.

From a mathematical point of view, there exist several results for the KdVB equation in both bounded
and unbounded domains, concerning the global and local well–posedness problem [8], [26], [14] and [3];
the optimal control problem [4], [11]; the internal controllability problem on unbounded domain [17];
and the boundary feedback stabilization problem [23]. As far as we know, the internal controllability
problem for (1.1) has not been studied and thus, our paper will fill this gap.

Throughout our work, we will use the following notation: let ω ⊂ (0, L) be a nonempty open subset
and let Q = (0, L) × (0, T ), for T > 0. The main result of this paper is related to the local exact
controllability to the trajectories of the KdVB equation

yt + yxxx − ν(t)yxx + yyx = v1ω×(0,T ) in Q,
y(0, t) = y(L, t) = 0 on (0, T ),
yx(0, t) = yx(L, t) on (0, T ),
y(·, 0) = y0(·) in (0, L),

(1.2)

where v = v(x, t) stands for the control, which acts in the domain ω × (0, T ).

Let us now introduce the concept of exact controllability to the trajectories for the Korteweg–de
Vries–Burgers (KdVB) equation. The goal is to reach (in finite time T ) any point on a given trajectory
of the same operator. Let y be a solution of the uncontrolled KdVB equation:

yt + yxxx − ν(t)yxx + y yx = 0 in Q,
y(0, t) = y(L, t) = 0 on (0, T ),
yx(0, t) = yx(L, t) on (0, T ),
y(·, 0) = y0(·) in (0, L).

(1.3)
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We look for a control v such that the solution of (1.2) satisfies:

y(·, T ) = y(·, T ) in (0, L). (1.4)

In this paper we will show that for any given trajectory y, which is a solution of (1.3), there exists
a δ > 0 such that, for any y0 ∈ X (an appropriate Banach space) satisfying

‖y0 − y0‖X ≤ δ, (1.5)

one can find a control v such that the system (1.2) admits a solution y(x, t) satisfying (1.4).
Here we assume

y ∈ C([0, T ];Hs(0, L)) ∩ L2(0, T ;Hs+1(0, L)) (1.6)

for some s ∈ [0, 3].
To prove the exact controllability to the trajectory, we consider two relevant control systems, namely,

the linearized system of (1.2) around y which is
yt + yxxx − ν(t)yxx + yyx + yyx = f + v1ω×(0,T ) in Q,
y(0, t) = y(L, t) = 0 on (0, T ),
yx(0, t) = yx(L, t) on (0, T ),
y(·, 0) = y0(·) in (0, L)

(1.7)

and the adjoint system associated to (1.7)
−ϕt − ϕxxx − ν(t)ϕxx − yϕx = g in Q,
ϕ(0, t) = ϕ(L, t) = 0 on (0, T ),
ϕx(0, t) = ϕx(L, t) on (0, T ),
ϕ(·, T ) = ϕT (·) in (0, L).

(1.8)

Our strategy is as follows:

i) Establish first a global Carleman inequality for the system (1.8). More precisely, we will prove the
following Theorem:

Theorem 1.1. Let ν ∈ L∞(0, T ) and assume that y satisfies (1.6). Then, there exist two positive
constants s0, C depending on L and ω such that, for every ϕT ∈ L2(0, L) and g ∈ L2(Q), the
corresponding solution to (1.8) satisfies:∫∫

Q

[s5ξ5|ϕ|2+s3ξ3|ϕx|2 + sξ|ϕxx|2]e−4sα̂dxdt

≤ C
(∫∫
Q

|g|2e−2sα̂dxdt+ s9

∫∫
ω×(0,T )

ξ9e−6sᾰ+2sα̂|ϕ|2dxdt
)
,

(1.9)

for every s ≥ s0.

The estimate (1.9) allows us to prove a null controllability result for the linear system (1.7) with
right–hand side satisfying suitable decreasing properties near t = T . Theorem 1.1 will be proved
using the same approach as in [21, 2, 7].

ii) Then establish the local exact controllability to the trajectories for the KdVB equation. Here,
fixed point arguments will be used to prove Theorem 1.2 given below.

Theorem 1.2. Let T > 0 be given, Assume y ∈ C([0, T ];L2(0, L)) ∩ L2(0, T ;H1(0, L)) be the
solution of (1.3). Then there exists a δ > 0 such that for y0 ∈ L2(0, L) satisfying (1.5), one can
find a function control v ∈ L2(0, T ;L2(ω)) such that (1.2) admits a solution y satisfies

y(·, T ) = y(·, T ) in (0, L).

The paper is organized as follows. In Section 2, we prove the local well-posedness of the system (1.1).
In Section 3, we establish a Carleman inequality for the adjoint system (1.8), which is associated to the
linearized KdVB equation. In other words, we prove Theorem 1.1. In section 4, we deal with the null
controllability for a linearized system with a right–hand side in L2(0, L). Finally, in Section 5, the proof
of Theorem 1.2 is given.
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2 Well–posedness

2.1 Linear case

In this subsection we establish the well–posedness of the system
yt + yxxx − ν(t)yxx + yyx + yxy = f in Q,
y(0, t) = y(L, t) = 0 on (0, T ),
yx(0, t) = yx(L, t) on (0, T ),
y(·, 0) = y0(·) in (0, L),

(2.1)

where y satisfies (1.3). First we consider the following linear problem
yt + yxxx − ν0yxx = f in Q,
y(0, t) = y(L, t) = 0 on (0, T ),
yx(0, t) = yx(L, t) on (0, T ),
y(·, 0) = y0(·) in (0, L),

(2.2)

where ν0 > 0 is a constant.

Proposition 2.1. Let T > 0 be given. For any y0 ∈ L2(0, L) and f ∈ L1(0, T ;L2(0, L)), (2.2) admits
a unique mild solution y ∈ C([0, T ];L2(0, L)) satisfying

‖y‖C([0,T ];L2(0,L)) ≤ C(‖y0‖L2(0,L) + ‖f‖L1(0,T ;L2(0,L)))

where C > 0 is a constant independent of y0 and f .

Proof. Consider the operator A := −∂3
x + ν0∂

2
x defined on

D(A) := {u ∈ H3(0, L) ∩H1
0 (0, L) : u(0) = u(L) = 0, ux(0) = ux(L)} ⊂ L2(0, L).

For any ϕ ∈ D(A),

〈Aϕ,ϕ〉L2(0,L) = −
L∫

0

ϕxxxϕdx+ ν0

L∫
0

ϕxxϕdx = −ν0

L∫
0

|ϕx|2 dx ≤ 0.

Thus A is dissipative. Similarly, one can verify that A∗ is also dissipative. Thus, the operator A generates
a strongly semigroup {S(t)}t≥0 of contractions in L2(0, L) by the Lumer–Phillips Theorem ( see [30],
Corollary 4.4, page 15). Hence, for any y0 ∈ L2(0, L), T > 0 and f ∈ L1(0, T ;L2(0, L)), (2.2) admits a
unique mild solution y ∈ C([0, T ];L2(0, L)), given by the formula

y(t) = S(t)y0 +

t∫
0

S(t− s)f(s)ds, ∀t ∈ [0, T ] (2.3)

and depending continuously on the data, i.e.,

‖y‖C([0,T ];L2(0,L)) := sup
t∈[0,T ]

‖y‖L2(0,L) ≤ (‖y0‖L2(0,L) + ‖f‖L1(0,T ;L2(0,L))).

This completes the proof of Proposition 2.1.

Remark 2.1. Observe that if the initial data y0 belongs to D(A) and f ∈ C1([0, T ];L2(0, L)) or f ∈
L1(0, T ;D(A)) ∩C([0, T ];L2(0, L)), the system (2.2) admits a unique classical solution, in other words,
y belongs to

C([0, T ];L2(0, L)) ∩ C1((0, T ];L2(0, L)) ∩ C((0, T ];D(A)),

which can be expressed as (2.3). The reader interested can see [[30], Corollary 2.2, page 106] for more
details.

The following lemma reveals a global Kato smoothing property of the mild solutions of (2.2).
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Lemma 2.1. For every T > 0, f ∈ L1(0, T ;L2(0, L)) and y0 ∈ L2(0, L), the corresponding mild solution
of (2.2) belongs to C([0, T ];L2(0, L)) ∩ L2(0, T ;H1(0, L)) and satisfies

‖y‖L∞(0,T ;L2(0,L)) + ‖y‖L2(0,T ;H1(0,L)) ≤ C(‖y0‖L2(0,L) + ‖f‖L1(0,T ;L2(0,L))),

for some positive constant C dependent of ν0. Furthermore, the term yyx belongs to L1(0, T ;L2(0, L))
and it satisfies the estimate

‖yyx‖L1(0,T ;L2(0,L)) ≤ C‖y‖2L2(0,T ;H1(0,L)),

for some constant C > 0 dependent of ν0.

Proof. The proof follows the same ideas in [23], it is therefore omitted here.

Now we recall three additional Lemmas on sharp Kato smoothing property of the linear KdVB systems.
The first one is for the linear KdVB equation posed on the whole line R.{

wt + wxxx − ν0wxx = 0, x ∈ R, t ∈ (0,+∞),
w(x, 0) = w0(x), x ∈ R. (2.4)

Lemma 2.2. For a given 0 ≤ s ≤ 3 and w0 ∈ Hs(R), the solution of problem (2.4) satisfies

sup
x∈R

(
‖w(x, ·)‖

H
s+1
3 (0,+∞)

+ ‖wx(x, ·)‖
H
s
3 (0,+∞)

)
≤ C‖w0‖Hs(R), (2.5)

for some positive constant C.

The second one is for solutions of system (2.2).

Lemma 2.3. For given y0 ∈ L2(0, L) and f ≡ 0, the unique solution y of (2.2) belongs to

L∞(0, L;H
1
3 (0, T )) with yx ∈ L∞(0, T ;L2(0, L)) satisfying

sup
x∈[0,L]

(
‖y(x, ·)‖

H
1
3 (0,T )

+ ‖yx(x, ·)‖L2(0,T )

)
≤ C‖y0‖L2(0,L), (2.6)

where C is a positive constant.

The third one is for solutions of the following linear problem
yt + yxxx − ν0yxx = f in (0, L)× (0,+∞),
y(0, t) = y(L, t) = 0 on (0, T ),
yx(0, t) = yx(L, t) on (0, T ),
y(·, 0) = 0 in (0, L).

(2.7)

Lemma 2.4. For any T > 0 and f ∈ L1(0, T ;L2(0, L)), there exists a positive constant C such that the
solution y(x, t) of (2.7) satisfies

sup
x∈[0,L]

(
‖y(x, ·)‖

H
1
3 (0,T )

+ ‖yx(x, ·)‖L2(0,T )

)
≤ C

T∫
0

‖f(·, s)‖L2(0,L) ds.

Combining the previous results, we obtain the following Lemma for the linear system (2.2).

Lemma 2.5. For any T > 0, f ∈ L1
loc(0,+∞;L2(0, L)) and y0 ∈ L2(0, T ), the linear problem (2.2)

admits a unique solution

y ∈ C([0, T ];L2(0, L)) ∩ L2(0, T ;H1(0, L)) ∩ L∞(0, L;H
1
3 (0, T ))

satisfying yx ∈ L∞(0, L;L2(0, T )). Furthermore, there exists a constant C independent of T, y0 and f
such that

sup
t∈[0,T ]

‖y(·, t)‖L2(0,L)+‖y‖L2(0,T ;H1(0,L)) + sup
x∈[0,L]

(
‖y(x, ·)‖

H
1
3 (0,T )

+ ‖yx(x, ·)‖L2(0,T )

)
≤ C

(
‖f‖L1(0,T ;L2(0,L)) + ‖y0‖L2(0,L)

)
.
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In order to build the necessary regularity which will be used later on, we introduce a weak formulation
of (2.2) for f ∈ L2(0, T ;H−1(0, L)).

Definition 2.1. For (f, y0) ∈ L2(0, T ;H−1(0, L))× L2(0, L) a function y ∈ C([0, T ];L2(0, L)) is called
a weak solution of (2.2) if it satisfies the following identity

T∫
0

L∫
0

ygdxdt+ (y(T ), ϕT )L2(0,L) =

T∫
0

〈f, ϕ〉H−1(0,L)×H1
0 (0,L)dt+ (y0, ϕ(0))L2(0,L), (2.8)

for all (g, ϕT ) ∈ L1(0, T ;L2(0, L))× L2(0, L), where ϕ = ϕ(g, ϕT ) is the mild solution of
−ϕt − ϕxxx − ν0ϕxx = g in (0, L)× (0,+∞),
ϕ(0, t) = ϕ(L, t) = 0 on (0, T ),
ϕx(0, t) = ϕx(L, t) on (0, T ),
ϕ(·, T ) = ϕT in (0, L).

(2.9)

In the following proposition we prove a regularity result for (2.2) by considering the pair (f, y0)
belongs to L2(0, T ;Hs−1(0, L))×Hs(0, L)) for any given s ∈ [0, 3].

Proposition 2.2. Let 0 ≤ s ≤ 3 be given. For any (f, y0) ∈ L2(0, T ;Hs−1(0, L))×Hs(0, L)), the system
(2.2) admits a unique weak solution y ∈ C([0, T ];Hs(0, L)) ∩ L2([0, T ];Hs+1(0, L)) and, furthermore,
there exists a positive constant C such that

‖y‖L2(0,T ;Hs+1(0,L)) ≤ C
(
‖f‖L2(0,T ;Hs−1(0,L)) + ‖y0‖Hs(0,L)

)
. (2.10)

Proof. Consider the system
du

dt
= Au+ f, u(0) = φ

as defined in (2.2). Since A is the infinitesimal generator of a semigroup S(t) in the space L2(0, L), it
follows from the standard semigroup theory that

φ ∈ L2(0, L), f ∈ L1(0, T ;L2(0, L)) =⇒ u ∈ C([0, T ];L2(0, L))

and moreover, there exists a constant C > 0 such that

‖u‖C([0,T ];L2(0,L)) ≤ C
(
‖φ‖L2(0,L) + ‖f‖L1((0,T );L2(0,L))

)
.

In addition,
φ ∈ D(A), f ∈ L1(0, T ;D(A)) =⇒ u ∈ C([0, T ];H3(0, L))

and furthermore, there exists a constant C > 0 such that

‖u‖C([0,T ];H3(0,L)) ≤ C
(
‖φ‖H3(0,L) + ‖f‖L1((0,T );H3(0,L))

)
.

Taking into account that

d

dt

∫ L

0

u2(x, t)dx+ 2ν0

∫ L

0

u2
x(x, t)dx = 2

∫ L

0

f(x, t)u(x, t)

for any t ≥ 0, we arrive at∫ L

0

u2(x, t)dx−
∫ L

0

u2(x, 0)dx+ 2ν0

∫ t

0

∫ L

0

u2
x(x, t)dxdt = 2

∫ t

0

∫ L

0

f(x, t)u(x, t)dx,

which implies that
‖u‖L2(0,T ;H1(0,L)) ≤ C

(
‖φ‖L2(0,L) + ‖f‖L2(0,T ;H−1(0,L))

)
.

Similarly, if we let v = Au, then we have

‖v‖L2(0,T ;H1(0,L)) ≤ C
(
‖Aφ‖L2(0,L) + ‖Af‖L2(0,T ;H−1(0,L))

)
,
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which yields that
‖u‖L2(0,T ;H4(0,L)) ≤ C

(
‖φ‖H3(0,L) + ‖f‖L2(0,T ;H2(0,L))

)
.

By interpolation arguments,

‖u‖L2(0,T ;H1+3θ(0,L)) ≤ C
(
‖φ‖H3θ(0,L) + ‖f‖L2(0,T ;H−1+3θ(0,L))

)
,

for 0 ≤ θ ≤ 1, or in equivalent form

‖u‖L2(0,T ;H1+s(0,L)) ≤ C
(
‖φ‖Hs(0,L) + ‖f‖L2(0,T ;Hs−1(0,L))

)
,

for 0 ≤ s ≤ 3. This completes the proof of Proposition 2.2.

Now, we extend the previous Proposition to the linearized system (2.1). For this purpose, let us
introduce the space Y sT as follows: for any 0 ≤ s ≤ 3 and any T > 0,

Y sT := C([0, T ];Hs(0, L)) ∩ L2([0, T ];Hs+1(0, L)).

Lemma 2.6. For given 0 ≤ s ≤ 3 and T > 0, there exists a positive constant C such that

‖(uv)x‖L2(0,T ;Hs−1(0,L)) ≤ C‖u‖Y sT ‖v‖Y sT (2.11)

and
‖ν̃vxx‖L2(0,T ;Hs−1(0,L)) ≤ C‖ν̃‖L∞(0,T )‖v‖Y sT (2.12)

holds for any u, v ∈ Y sT and ν̃ ∈ L∞(0, T ).

Proof. i) The case s = 0. In this case, we have

‖uv‖2L2(Q) ≤
T∫

0

‖u(·, t)‖2L∞(0,L)

L∫
0

v2(x, t)dxdt ≤ ‖v‖2C([0,T ];L2(0,L))‖u‖
2
L2(0,T ;L∞(0,L)).

Taking into account that H1(0, L) ↪→ L∞(0, L), the inequality (2.11) is proved.

On the other hand,

‖ν̃vxx‖2L2(0,T ;H−1(0,L)) ≤ sup
t∈[0,T ]

|ṽ|2‖v‖2L2(0,T ;H1(0,L)).

ii) The case s = 1. Following the previous steps, we have

‖(uv)x‖2L2(Q) ≤ 2

T∫
0

(
‖v(·, t)‖2L∞(0,L)‖u(·, t)‖2H1(0,L) + ‖u(·, t)‖2L∞(0,L)‖v(·, t)‖2H1(0,L)

)
dt

≤ C‖u‖Y 1
T
‖v‖Y 1

T

and
‖ν̃vxx‖2L2(Q) ≤ sup

t∈[0,T ]

|ṽ|2‖v‖2L2(0,T ;H2(0,L)). ≤ C‖ν̃‖L∞(0,T )‖v‖Y 1
T
.

Similar arguments for s = 2, 3 as well as interpolation properties allow to complete the proof.

Proposition 2.3. Let T > 0 and s ∈ [0, 3] be given and assume y satisfies (1.6). Then for any
y0 ∈ Hs(0, L), the linearized system (2.1) admits a unique solution y ∈ Y sT .

Proof. The proof is developed for the case s = 0. Similar arguments allow to extend this result for
0 < s ≤ 3. Let us consider R > 0 and 0 < θ ≤ min{1, T} two appropriate constants to be determined.
Let Bθ,R := {v ∈ Y 0

θ : ‖v‖Y 0
θ
≤ R} and define a map Λ : Bθ,R → Bθ,R by Λ(v) = y, where y is the

unique solution of 
yt + yxxx − ν0yxx = ν̃(t)vxx + (yv)x in Q,
y(0, t) = y(L, t) = 0 on (0, T ),
yx(0, t) = yx(L, t) on (0, T ),
y(·, 0) = y0(·) in (0, L).
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Obviously,

Λ(v) = S(t)y0 +

t∫
0

S(t− τ)[ν̃vxx + (yv)x](τ) dτ.

From the above representation, Proposition 2.2 and Lemma 2.6, there exist positive constants C1, C2

such that
‖Λ(v)‖Y 0

θ
≤ C1‖y0‖L2(0,L) + C2θ

1/2(‖ν̃‖L∞(0,T ) + ‖y‖Y 0
T

)‖v‖Y 0
θ
. (2.13)

Choose R > 0 and T ∗ = θ such that

R := m0C1‖y0‖L2(0,L) and C2T
∗1/2(‖ν̃‖L∞(0,T ) + ‖y‖Y 0

T
) ≤ 1

2n0
, ∀m0, n0 ≥ 2.

Then, by (2.13) we have that ‖Λ(v)‖Y 0
T∗
≤ R. Furthermore, for every u, v ∈ BT∗,R,

‖Λ(v)− Λ(u)‖Y 0
T∗
≤ C2T

∗1/2‖ν̃(vxx − uxx) + (y(v − u))x‖L2(0,T∗;H−1(0,L))

≤ 1

n0
‖v − u‖Y 0

T∗
.

Therefore, Λ is a contraction mapping on BT∗,R and it has a unique fixed point u ∈ Y 0
T∗ which is

the solution to the linearized problem (2.2) in (0, T ∗). Finally, from (2.1)–(2.1) we can observe that
T ∗ ∈ (0, T ) is independent on ‖y0‖L2(0,L), it implies that the previous arguments can be extended on
intervals (T ∗, 2T ∗], (2T ∗, 3T ∗], . . . , ((n − 1)T ∗, nT ∗ = T ]. Therefore, the existence of a unique solution
of (2.1) in (0, T ) is guaranteed. This completes the proof of Proposition 2.3.

Remark 2.2. As consequence of Proposition 2.3 and Proposition 2.2, for any trajectory y ∈ Y sT , the
solution y of (2.1) satisfies

‖y‖Y sT ≤ C
(
‖f‖L2(0,T ;Hs−1(0,L)) + ‖y0‖Hs(0,L)

)
, (2.14)

for some positive constant C.

2.2 Nonlinear case

In this subsection we turn to consider the following nonlinear initial boundary value problem (IBVP):
yt + yxxx − ν(t)yxx + yyx = 0 in (0, L)× (0,+∞),
y(0, t) = y(L, t) = 0 in (0, T ),
yx(0, t) = yx(L, t) on (0, T ),
y(·, 0) = y0(·) in (0, L).

(2.15)

Proposition 2.4. Let s ∈ [0, 3] and T > 0 be given. There exists δ > 0 such that for any y0 ∈ Hs(0, L)
satisfying ‖y0‖Hs(0,L) ≤ δ, the nonlinear system (2.15) admits a unique solution y ∈ Y sT .

Proof. The proof follows the same scheme of the linear case. In fact, let R > 0 be an appropriate
constant to be determined. Again, we consider a map Λ : BR ⊂ Y sT → Y sT by Λ(v) = y where y solves

yt + yxxx − ν(t)yxx = vvx in Q,
y(0, t) = y(L, t) = 0 in (0, T ),
yx(0, t) = yx(L, t) on (0, T ),
y(·, 0) = y0(·) in (0, L).

In this case,

Λ(v) = S(t)y0 +

t∫
0

S(t− τ)(vvx)(τ) dτ.

Using Proposition 2.2, Lemma 2.6 and (2.14), there exist positive constants C3, C4 such that

‖Λ(v)‖Y sT ≤ C3‖y0‖Hs(0,L) + C4‖v‖2Y sT . (2.16)
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Consider R > 0 such that

R := m0C3‖y0‖Hs(0,L) and C4R ≤
1

2n0
, ∀m0, n0 ≥ 2. (2.17)

From (2.17), it is enough to define δ := (2m0n0C3C4)−1. Then, by (2.16) we have that ‖Λ(v)‖Y sT ≤ R.
Furthermore, for every u, v ∈ BR,

‖Λ(v)− Λ(u)‖Y sT ≤ C4‖uux − vvx‖L2(0,T ;Hs−1(0,L))

≤ C4(‖u‖Y sT + ‖v‖Y sT )‖u− v‖Y sT

≤ 1

n0
‖v − u‖Y sT .

Therefore Λ is a contraction mapping on BR and it has a unique fixed point u ∈ Y sT which is the solution
of (2.15).

3 Carleman inequality

In this section we will prove the Carleman estimate given in Theorem 1.1. To do this, we introduce
weight functions defined as follows. Let ω be a nonempty open subset of (0, L) and φ a positive function
in [0, L] such that φ ∈ C4([0, L]) and satisfies

φ(0) = φ(L), φ′(0) < 0, φ′(L) > 0, |φ′(0)| = |φ′(L)|, (3.1)

φ′′ < 0 in (0, L)\ω. (3.2)

Then, we consider the weight functions

α(x, t) := φ(x)ξ(t), ξ(t) :=
1

t2(T − t)2
,

α̂(t) := max
x∈[0,L]

α(x, t), ᾰ(t) := min
x∈[0,L]

α(x, t), 2α̂(t) < 3ᾰ(t).
(3.3)

Assume ω := (`1, `2) ⊂ (0, L). It is easy to verify that ϕ defined as follows satisfies (3.1) and (3.2):

ϕ(x) :=

{
εx3 − 3`1x

2 − x+ C1 if x ∈ [0, `1],
−εx3 + (1 + 3εL2)x+ C2 if x ∈ [`2, L],

where C1 = 2εL3 + L+ C2 and 0 < ε < 1 and C2 � 1.

Proof. Theorem 1.1. For an easier comprehension, we divide the proof in several steps:
Step 1. Decomposition of the solution. In this step, we decompose the solution ϕ of (1.8) in order to
obtain L2 regularity on the right–hand side of (1.8). In other words, let us introduce z and ψ, the
solutions of the following systems

−zt − zxxx − ν(t)zxx − yzx = −(ρ0)tϕ in Q,
z(0, t) = z(L, t) = 0 on (0, T ),
zx(0, t) = zx(L, t) on (0, T ),
z(·, T ) = 0 in (0, L).

(3.4)

and 
−ψt − ψxxx − ν(t)ψxx − yψx = −ρ0g in Q,
ψ(0, t) = ψ(L, t) = 0 on (0, T ),
ψx(0, t) = ψx(L, t) on (0, T ),
ψ(·, T ) = 0 in (0, L),

(3.5)

where ρ0(t) = e−sα̂. By uniqueness for the linear KdVB equation, we have

ρ0ϕ = z + ψ. (3.6)
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The rest of the proof consists in making a Carleman inequality for the system (3.4), meanwhile, for the
system (3.5) we will use the regularity result (2.14), namely

‖ψ‖2L2(0,T ;H2(0,L)) ≤ C‖ρ0g‖2L2(Q). (3.7)

Step 2. Change of variables and decomposition of a special operator. In this step, we consider the
differential operator satisfied by a new variable w, which will be z up to a weight function. More precisely,
let w = e−sαz andG = e−sα(−(ρ0)tϕ+yzx). Then, if L is the operator defined by L := ∂t+∂xxx+ν(t)∂xx,
the identity e−sαL(esαw) = −G is equivalent to:

L1w + L2w = Fs

where
L1w := wt + wwww + 3s2(αx)2wx
L2w := 3s(αx)wxx + s3(αx)3w + 3s(αxx)wx

(3.8)

and
Fs = −G−Rs, (3.9)

with

Rs := ν(t)sαxxw + sαtw + sαxxxw + 3s2αxxαxxxw + sαxw + wx − ν(t)(2sαxwx − wxx − s2α2
xw).

Therefore,
‖L1w‖2L2(Q) + ‖L2w‖2L2(Q) + 2〈L1w,L2w〉 = ‖G+Rs‖2L2(Q), (3.10)

where 〈·, ·〉 is the L2(Q) inner product. In the next step, we will estimate the terms that arise of the inner
product 〈L1w,L2w〉. This will give an inequality with global terms on the left–hand side, meanwhile the
local terms will appear on the right–hand side. Finally, after returning to the principal variable z, the
local terms will be estimate using bootstrap arguments based on the smoothing of the KdVB equation.
Step 3. First estimates. In this step, we develop the nine terms appearing in 〈L1w,L2w〉. Using
integration by parts, we have:

I1,1 := 〈L1
1w,L

1
2w〉 = 3s

∫∫
Q

αxwtwxxdxdt

= −3s

∫∫
Q

αxxwtwxdxdt+
3s

2

∫∫
Q

αxt|wx|2dxdt+ 3s

T∫
0

(
αxwxwt

∣∣∣x=L

x=0

)
dt.

︸ ︷︷ ︸
A

I1,2 := 〈L1
1w,L

2
2w〉 = s3

∫∫
Q

(αx)3wtwdxdt = −3s3

2

∫∫
Q

(αx)2αxt|w|2dxdt.

I1,3 := 〈L1
1w,L

3
2w〉 = 3s

∫∫
Q

αxxwxwtdxdt

= −3s

∫∫
Q

αxxwxwxtdxdt− 3s

∫∫
Q

αxwxxwtdxdt+A

=
3s

2

∫∫
Q

αxt|wx|2dxdt+A− I1,1

(3.11)

I2,1 := 〈L2
1w,L

1
2w〉 = 3s

∫∫
Q

αxwxxwxxxdxdt

= −3s

2

∫∫
Q

αxx|wxx|2dxdt+
3s

2

T∫
0

(
αx|wxx|2

∣∣x=L

x=0

)
dt.

︸ ︷︷ ︸
B

(3.12)
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I2,2 := 〈L2
1w,L

2
2w〉 = s3

∫∫
Q

(αx)3wwxxx

= −3s3

∫∫
Q

(αxxαx)wwxxdxdt− s3

∫∫
Q

(αx)3wxwxxdxdt+ s3

T∫
0

(
(αx)3wwxx

∣∣∣x=L

x=0

)
dt

= 3s3

∫∫
Q

[(αx)2αxx]xwwxdxdt+ 3s3

∫∫
Q

(αx)2αxx|wx|2dxdt

− 3s3

T∫
0

(
(αx)2αxx|wx|2

∣∣∣x=L

x=0

)
dt+

s3

2

∫∫
Q

[(αx)3]x|wx|2dxdt

− s3

2

T∫
0

(
(αx)3|wx|2

∣∣∣x=L

x=0

)
dt+ s3

T∫
0

(
(αx)3wwxx

∣∣∣x=L

x=0

)
dt

=
9s3

2

∫∫
Q

(αx)2αxx|wx|2dxdt−
3s3

2

∫∫
Q

[(αx)2αxx]xx|w|2dxdt+ C̃,

(3.13)

where

C̃ :=
3s3

2

T∫
0

(
[(α)2αxx]x|w|2

∣∣∣x=L

x=0

)
dt− 3s3

T∫
0

(
(αx)2αxx|w|2

∣∣∣x=L

x=0

)
dt− s3

2

T∫
0

(
(αx)3|wx|2

∣∣∣x=L

x=0

)
dt

+ s3

T∫
0

(
(αx)3wwxx

∣∣∣x=L

x=0

)
dt.

I2,3 := 〈L2
1w,L

3
2w〉 = 3s

∫∫
Q

αxxwxwxxdxdt

= −3s

∫∫
Q

αxxxwxwxxdxdt− 3s

∫∫
Q

αxx|wxx|2dxdt+ 3s

T∫
0

(
αxxwxwxx

∣∣∣x=L

x=0

)
dt

= −3s

∫∫
Q

αxx|wxx|2dxdt+
3s

2

∫∫
Q

αxxx|wx|2dxdt+D,

(3.14)

where

D := 3s

T∫
0

(
αxxwxwxx

∣∣∣x=L

x=0

)
dt− 3s

2

T∫
0

(
αxxx|wx|2

∣∣∣x=L

x=0

)
dt.

I3,1 := 〈L3
1w,L

1
2w〉 = 9s3

∫∫
Q

(αx)3wxwxxdxdt

= −9s3

2

∫∫
Q

[(αx)3]x|wx|2dxdt+
9s3

2

T∫
0

(
(αx)3|wx|2

∣∣∣x=L

x=0

)
dt

= −27s3

2

∫∫
Q

(αx)2αxx|wx|2dxdt+
9s3

2

T∫
0

(
(αx)3|wx|2

∣∣∣x=L

x=0

)
dt

︸ ︷︷ ︸
E

.

(3.15)
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I3,2 := 〈L3
1w,L

2
2w〉 = 3s5

∫∫
Q

(αx)5wwxdxdt

= −3s5

2

∫∫
Q

[(αx)5]x|w|2dxdt+
3s5

2

T∫
0

(
(αx)5|w|2

∣∣∣x=L

x=0

)
dt

= −15s5

2

∫∫
Q

(αx)4αxx|w|2dxdt+
3s5

2

T∫
0

(
(αx)5|w|2

∣∣∣x=L

x=0

)
dt

︸ ︷︷ ︸
F

.

(3.16)

I3,3 := 〈L3
1w,L

3
2w〉 = 9s3

∫∫
Q

(αx)2αxx|wx|2dxdt. (3.17)

From (3.13), (3.15) and (3.17) we have that

I2,2 + I3,1 + I3,3 = −3s3

2

∫∫
Q

[(φx)2φxx]xxξ
3|w|2dxdt+ C̃ + E.

Now, taking into account the first boundary condition of (3.4) and (3.2), the term I3,2 can be
estimated as follows:

Cs5

∫∫
Q

ξ5|w|2dxdt− Cs5

∫∫
ω×(0,T )

ξ5|w|2dxdt ≤ −15s5

2

∫∫
Q

(αx)4αxx|w|2dxdt, (3.18)

for any s ≥ C(L, ω, T ).
On the other hand, if I2,1

1 and I2,3
1 denote the first terms of (3.12) and (3.14), respectively, then

I2,1
1 + I2,3

1 = −9s

2

∫
Q

φxxξ|wxx|2dxdt ≥ Cs
∫∫
Q

ξ|wxx|2dxdt− Cs
∫∫

ω×(0,T )

ξ|wxx|2dxdt. (3.19)

for any s ≥ C(L, ω, T ).
Now, putting together the first term of I2,2 (denoted by I2,2

1 ) as well as the first term of I3,1 (which
is denoted by I3,1

1 ) and I3,3, we get
I2,2
1 + I3,1

1 + I3,3 = 0.

However, from (3.18) and (3.19) we also have (after integrating by parts and using Young’s inequality)
that

s3

∫∫
Q

ξ3|wx|2dxdt ≤
∫∫
Q

(s5ξ5|w|2 + sξ|wxx|2)dxdt. (3.20)

Thus, the first term of (3.11) as well as the second term of (3.14) can be estimated by the left–hand
side of (3.20).

Then, putting together all the computations, we get the following inequality∫∫
Q

[s5ξ5|w|2 + s3ξ3|wx|2 + sξ|wxx|2]dxdt+A+B + C̃ +D + E

≤ C
( ∫∫
ω×(0,T )

[(sξ)5|w|2 + sξ|wxx|2]dxdt+ ‖G‖2L2(Q) + ‖Rs‖2L2(Q)

)
,

(3.21)

for any s ≥ C(L, ω, T ).
Observe that the last term on the right–hand side (3.21) can be absorbed by the left–hand side for

s ≥ C(L, ω, T, ‖ν‖L∞(0,T )). Furthermore, taking into account that G = [−(ρ0)tϕ + yzx]e−sα, we can
estimate the term yzx by considering the identity wx + sαxw = e−sαzx and the inequality

|yzx|2e−2sα ≤ Cs|ywx|2 + Cs2(αx)2|yw|2.
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From (3.6), (3.7) and the estimate |(ρ0)tϕ| ≤ Csξ3/2|ρ0ϕ|, we readily have that there exists a positive
constant C = C(L, ω, T, ‖ν‖L∞(0,T ), ‖y‖C(0,T ;L2(0,L))∩L2(0,T ;H1(0,L))) such that∫∫

Q

[s5ξ5|w|2 + s3ξ3|wx|2 + sξ|wxx|2]dxdt+A+B + C̃ +D + E

≤ C
(∫∫
Q

|g|2e−2sα̂dxdt+

∫∫
ω×(0,T )

[(sξ)5|w|2 + sξ|wxx|2]dxdt
)
,

for any s ≥ C.
Finally, using the weight functions defined in (3.1) and (3.2) we have the following estimates:

A = 3s

T∫
0

[αx(L, t)wx(L, t)wt(L, t)− αx(0, t)wx(0, t)wt(0, t)]dt = 0.

B =
3s

2

T∫
0

[αx(L, t)|wxx(L, t)|2 − αx(0, t)|wxx(0, t)|2]dt ≥ Cs
T∫

0

ξ(|wxx(0, t)|2 + |wxx(L, t)|2)dt.

C̃ + E = 4

T∫
0

[(αx(L, t))3|wx(L, t)|2 − (αx(0, t))3|wx(0, t)|2]dt ≥ Cs3

T∫
0

ξ3|wx(L, t)|2dt.

and

D = 3s

T∫
0

[αxx(L, t)wx(L, t)wxx(L, t)− αxx(0, t)wx(0, t)wxx(0, t)]dt

− 3s

2

T∫
0

[αxxx(L, t)|wx(L, t)|2 − αxxx(0, t)|wx(0, t)|2]dt

≤ Cs2

T∫
0

ξ|wx(L, t)|2dt+ C

T∫
0

ξ(|wxx(0, t)|2 + |wxx(L, t)|2)dt.

Therefore, at this moment we have the following inequality

∫∫
Q

[s5ξ5|w|2+s3ξ3|wx|2 + sξ|wxx|2]dxdt+ s3

T∫
0

ξ3|wx(L, t)|2dt

+ s

T∫
0

ξ(|wxx(0, t)|2 + |wxx(L, t)|2)dt

≤ C
(∫∫
Q

|g|2e−2sα̂dxdt+

∫∫
ω×(0,T )

[(sξ)5|w|2 + sξ|wxx|2]dxdt
)
,

(3.22)

for any s ≥ C.
Step 4. Local estimates. In this step, we turn back to our original function and use bootstrap arguments
as in [7] and [21] to estimate the local term associated to |wxx|.

Recall that z = esαw. Then, a direct computation allow to obtain

|zx|2e−2sα ≤ C(s2ξ2|w|2 + |wx|2) (3.23)

and
|zxx|2e−2sα ≤ C(s4ξ4|w|2 + s2ξ2|wx|2 + |wxx|2). (3.24)
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On the other hand,
|wxx|2 ≤ Ce−2sα(s4ξ4|z|2 + s2ξ2|zx|2 + |zxx|2)). (3.25)

From (3.25) the local term given in (3.22) can be written by∫∫
ω×(0,T )

[(sξ)5|z|2 + s3ξ3|zx|2 + sξ|zxx|2]e−2sαdxdt. (3.26)

In addition, the weight functions α̂, ᾰ, ξ and (3.22)–(3.26) allow us to deduce the following inequality∫∫
Q

[s5ξ5|z|2+s3ξ3|zx|2 + sξ|zxx|2]e−2sα̂dxdt

≤ C
(∫∫
Q

|g|2e−2sα̂dxdt+

∫∫
ω×(0,T )

[s5ξ5|z|2 + s3ξ3|zx|2 + sξ|zxx|2]e−2sᾰdxdt
)
,

(3.27)

for any s ≥ C.
Using that H1(ω) = (H3(ω), L2(ω))2/3,2 and H2(ω) = (H3(ω), L2(ω))1/3,2, the last two terms in the

right–hand side of (3.27) can be upper bounded as follows:

s3

∫∫
ω×(0,T )

ξ3|zx|2dxdt ≤ s3

T∫
0

ξ3e−2sᾰ‖z‖4/3L2(ω)‖z‖
2/3
H3(ω)dt︸ ︷︷ ︸

J1

and

s

∫∫
ω×(0,T )

ξ|zxx|2dxdt ≤ s
T∫

0

ξe−2sᾰ‖z‖2/3L2(ω)‖z‖
4/3
H3(ω)dt.︸ ︷︷ ︸

J2

Now, applying Young’s inequality

J1 ≤ C(ε)s11/2

T∫
0

ξ11/2e−3sᾰ+sα̂‖z‖2L2(ω)dt+ εs−2

T∫
0

ξ−2e−2sα̂‖z‖2H3(ω)dt

and

J2 ≤ C(ε)s9

T∫
0

ξ9e−6sᾰ+4sα̂‖z‖2L2(ω)dt+ εs−3

T∫
0

ξ−3e−2sα̂‖z‖2H3(ω)dt,

for any ε > 0.
Putting together (3.27) and the previous estimates, we have∫∫

Q

[s5ξ5|z|2+s3ξ3|zx|2 + sξ|zxx|2]e−2sα̂dxdt

≤ C
∫∫
Q

|g|2e−2sα̂dxdt+ Cs9

∫∫
ω×(0,T )

ξ9e−6sᾰ+4sα̂|z|2dxdt

+ ε

(
s−2

T∫
0

ξ−2e−2sα̂‖z‖2H3(ω)dt+ s−3

T∫
0

ξ−3e−2sα̂‖z‖2H3(ω)dt

)
,

(3.28)

for any s ≥ C.
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Finally, in order to estimate the associated terms to ‖z‖2H3(ω), we will use a bootstrap argument based

on the smoothing effect of the KdVB equation. Let us star by defining z̃ := ρ̃(t)z with ρ̃(t) := s1/2ξe−sα̂.
From (3.4), we see that z̃ is the solution of the system

−z̃t − z̃xxx − ν(t)z̃xx − yz̃x = ρ̃(ρ0)tϕ− ρ̃tz in Q,
z̃(0, t) = z̃(L, t) = 0 on (0, T ),
z̃x(0, t) = z̃x(L, t) on (0, T ),
z̃(·, T ) = 0 in (0, L).

(3.29)

Taking into account the estimates |ρ̃t| ≤ Cs3/2ξ5/2e−sα̂, |(ρ0)t| ≤ Csξ3/2e−sα̂, and the regularity result
(2.14), we can deduce that

‖z̃‖2L2(0,T ;H2(Ω)) ≤ C
(
‖s3/2ξ5/2e−sα̂z‖2L2(Q) + ‖s3/2ξ5/2e−2sα̂ϕ‖2L2(Q)

)
. (3.30)

The fact that s3/2ξ5/2e−sα̂ is bounded allows us to use (3.7) and conclude that ‖z̃‖2L2(0,T ;H2(Ω)) is

bounded by the left–hand side of (3.28) and ‖ρ0g‖2L2(Q). Now, we define

ẑ := ρ̂(t)z with ρ̂(t) := s−1/2ξ−1/2e−sα̂.

It is easy to see that ẑ is the solution of (3.29) with ρ̃ replaced by ρ̂. Besides, from (2.14) we get

‖ẑ‖2L2(0,T ;H3(Ω)) ≤ C
(
‖s1/2ξe−sα̂z‖2L2((0,T );H1(Ω)) + ‖s1/2ξe−2sα̂ϕ‖2L2(0,T ;H1(Ω))

)
. (3.31)

Arguing as before, ‖ẑ‖2L2(0,T ;H3(Ω)) is bounded by the left–hand side of (3.28) and ‖ρ0g‖2L2(Q).

By combining (3.28), (3.30) and (3.31), we obtain in particular∫∫
Q

[s5ξ5|z|2+s3ξ3|zx|2 + sξ|zxx|2]e−2sα̂dxdt+ ‖s−1/2ξ−1/2e−sα̂z‖2L2(0,T ;H3(Ω))

≤ C
(∫∫
Q

|g|2e−2sα̂dxdt+ s9

∫∫
ω×(0,T )

ξ9e−6sᾰ+4sα̂|z|2dxdt
)

+ ε

(
s−2

T∫
0

ξ−2e−2sα̂‖z‖2H3(ω)dt+ s−3

T∫
0

ξ−3e−2sα̂‖z‖2H3(ω)dt

)
,

(3.32)

for any ε > 0. For ε small enough, the last two terms in the right-hand side of (3.32) can be absorbed
by the left–hand side. By returning to the variable ϕ the proof of Theorem 1.1 is ended.

4 Null controllability of the linearized system

In this section we will prove the null controllability for the system (1.7) with a right–hand side
which decays exponentially to zero when t goes to T [16]. In other words, we would like to find v ∈
L2(0, T ;L2(Ω)) such that the solution of

yt + yxxx − ν(t)yxx + yyx + yyx = h+ v1ω×(0,T ) in Q,
y(0, t) = y(L, t) = 0 on (0, T ),
yx(0, t) = yx(L, t) on (0, T ),
y(·, 0) = y0(·) in (0, L),

(4.1)

satisfies
y(·, T ) = 0 in (0, L), (4.2)

where the function h is in an appropriate weighted space. Before proving this results, we establish a
Carleman inequality with weight functions not vanishing in t = 0. To do this, let `(t) ∈ C1([0, T ]) be a
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positive function in [0, T ) such that `(t) = T 2/4 for all t ∈ [0, T/4] and `(t) = t(T − t) for all t ∈ [T/2, T ].
We introduce the following weight functions:

β(x, t) = φ(x)τ(t), τ(t) =
1

`2(t)
,

β̂(t) = max
x∈[0,L]

β(x, t), β̆(t) = min
x∈[0,L]

β(x, t).
(4.3)

Lemma 4.1. There exist positive constants s, C with C depending on s, ‖ν‖L∞(0,T ), ω, T such that every
solution of (1.8) verifies∫∫

Q

[τ5|ϕ|2+τ3|ϕx|2 + τ |ϕxx|2]e−4sβ̂dxdt+ ‖ϕ(0)‖2L2(0,L)

≤ C
(∫∫
Q

|g|2e−2sβ̂dxdt+

∫∫
ω×(0,T )

τ9e−6sβ̆+2sβ̂ |ϕ|2dxdt
)
.

(4.4)

Proof. By construction α = β and τ = ξ in [0, L]× (T/2, T ), so that

T∫
T/2

L∫
0

[ξ5|ϕ|2 + ξ3|ϕx|2 + ξ|ϕxx|2]e−4sα̂dxdt =

T∫
T/2

L∫
0

[τ5|ϕ|2 + τ3|ϕx|2 + τ |ϕxx|2]e−4sβ̂dxdt.

As consequence of Theorem 1.1 we have the estimate

T∫
T/2

L∫
0

[τ5|ϕ|2 + τ3|ϕx|2 + τ |ϕxx|2]e−4sβ̂dxdt

≤ C
(∫∫
Q

|g|2e−2sα̂dxdt+

∫∫
ω×(0,T )

ξ9e−6sᾰ+2sα̂|ϕ|2dxdt
)
.

Next, using that `(t) = t(T − t) for any t ∈ [T/2, T ] and

e−2sβ̂ ≥ C and τ9e−6sβ̆+2sβ̂ ≥ C in [0, T/2],

we readily have
T∫

T/2

L∫
0

[τ5|ϕ|2 + τ3|ϕx|2 + τ |ϕxx|2]e−2sβ̂dxdt

≤ C
(∫∫
Q

|g|2e−2sβ̂dxdt+

∫∫
ω×(0,T )

τ9e−6sβ̆+2sβ̂ |ϕ|2dxdt
)
.

(4.5)

On the other hand, by considering a function η ∈ C1([0, T ]) such that η ≡ 1 in [0, T/2] and η ≡ 0 in
[3T/4, T ], we can prove that ηϕ satisfies the system

−(ηϕ)t − ηϕxxx − ν(t)ηϕxx − yηϕx = −ηg − η′ϕ in Q,
(ηϕ)(0, t) = (ηϕ)(L, t) = 0 on (0, T ),
(ηϕ)x(0, t) = (ηϕ)x(L, t) on (0, T ),
(ηϕ)(·, T ) = 0 in (0, L).

(4.6)

Additionally, from classical energy estimates and regularity result with right-hand side in L2(Q) (see
(2.14)), we get

‖ϕ(0)‖2L2(0,L) + ‖ϕ‖2L2(0,T/2;L2(0,L)) ≤ C
(
‖g‖2L2(0,3T/4;L2(0,L)) + ‖ϕ‖2L2(T/2,3T/4;L2((0,L))

)
.

Taking into account that

τ5e−2sβ̂ ≥ C > 0, ∀t ∈ [T/2, 3T/4] and e−4sβ̂ ≥ C > 0, ∀t ∈ [0, 3T/4],
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we have

‖ϕ(0)‖2L2(0,L) +

T/2∫
0

L∫
0

[τ5|ϕ|2 + τ3|ϕx|2 + τ |ϕxx|2]e−4sβ̂dxdt

≤ C

( 3T/4∫
0

L∫
0

|g|2e−2sβ̂dxdt+

3T/4∫
T/2

L∫
0

τ5e−4sβ̂ |ϕ|2dxdt

)
.

(4.7)

Putting together (4.5) and (4.7) we obtain the desired inequality (4.4).

Now, we can prove the null controllability of system (4.1). The idea is to look a solution y in a
suitable weight functional space. To this end, we introduce the following space:

E :={(y, v) : esβ̂y ∈ L2(Q), τ−9/2e3sβ̆−sβ̂v1ω ∈ L2(Q),

esβ̂τ−3/2y ∈ C([0, T ];L2(0, L)) ∩ L2(0, T ;H1(0, L)),

e2sβ̂τ−5/2(yt + yxxx − ν(t)yxx + yyx + yyx − v1ω) ∈ L2(0, T ;H−1(0, L))}.

Proposition 4.1. Consider y0 ∈ L2(0, L) and e2sβ̂τ−5/2h ∈ L2(Q). Then, there exists a function
v ∈ L2(0, T ;L2(ω)) such that the associated solution (y, v) to (4.1) satisfies (y, v) ∈ E.
Furthermore, there exists a positive constant C such that

‖v‖L2(0,T ;L2(ω)) ≤ C(‖y0‖L2(0,L) + ‖h‖L2(Q)). (4.8)

Proof. The proof follows some ideas [21] and therefore we only give a sketch of the proof. Let us now
set

P0 = {ϕ ∈ C3(Q) : ϕ(0, t) = ϕ(L, t) = 0, ϕx(0, t) = ϕx(L, t), on (0, T )}
as well as the bilinear form

a(ϕ̂, w) :=

∫∫
Q

e−2sβ̂(L∗ϕ̂)(L∗w)dxdt+

∫∫
ω×(0,T )

e−6sβ̆+2sβ̂τ9ϕ̂wdxdt, ∀w ∈ P0

and the linear form

〈G,w〉 :=

∫∫
Q

hwdxdt+

L∫
0

y0(·)w(·, 0)dx, (4.9)

where L∗ is the adjoint operator of L, i.e.,

L∗w = −wt − wxxx − awxx − wwx.

Note that Carleman inequality (4.4) holds for every w ∈ P0, so that we have∫∫
Q

τ5e−4sβ̂ |w|2dxdt ≤ Ca(w,w), ∀w ∈ P0.

In consequence, it is very easy to prove that a(·, ·) : P0×P0 → R is a symmetric, definite positive bilinear
form on P0, so that, by defining P as the completion of P0 for the form induced by a(·, ·), it implies that
a(·, ·) is well–defined, continuous and again definite positive on P . In addition, from Carleman inequality

(4.4) and the hypothesis over the function h, i.e., e2sβ̂τ−5/2h ∈ L2(Q), the linear form w → 〈G,w〉 is
well defined and continuous on P . Hence, Lax–Milgram’s lemma allows us to guarantee the existence
and uniqueness of ϕ̂ ∈ P satisfying

a(ϕ̂, w) = 〈G,w〉 ; ∀w ∈ P. (4.10)

Let us set {
ŷ := e−2sβ̂L∗ϕ̂ in Q,

v̂ := −e−6sβ̆+2sβ̂τ9ϕ̂ in ω × (0, T ),
(4.11)

17



Observe that ŷ verifies

a(ϕ̂, ϕ̂) =

∫∫
Q

e2sβ̂ |ŷ|2dxdt+

∫∫
ω×(0,T )

e6sβ̆−2sβ̂τ−9|v̂|2dxdt < +∞. (4.12)

On the other hand, if v is replaced by v̂ in (4.1), we can introduce ỹ as the weak solution of (4.1).
It implies that ỹ is the unique solution of (4.1) with v = v̂ defined by transposition (see Definition 2.1).
Then ỹ = ŷ is the weak solution to (4.1).

Finally, we must verify that (ŷ, v̂) ∈ E. Clarify, from (4.12) we know that esβ̂ ŷ ∈ L2(Q) and

τ−9/2e3sβ̆−sβ̂ v̂ ∈ L2(Q). Moreover, the second hypothesis of Proposition 4.1 guarantees that

e2sβ̂τ−5/2(ŷt + ŷxxx − ν(t)ŷxx + yŷx + ŷyx − v̂) ∈ L2(Q).

Thus, we must just check that esβ̂τ−3/2ŷ ∈ C([0, T ];L2(0, L))∩L2(0, T ;H1(0, L)). To do this, we define
the functions

y∗ := esβ̂τ−3/2ŷ and h∗ := esβ̂τ−3/2(h+ v̂).

Observe that y∗ satisfies the system
y∗t + y∗xxx − ν(t)y∗xx + yy∗x + y∗yx = h∗ + (esβ̂τ−3/2)tŷ in Q,
y∗(0, t) = y∗(L, t) = 0 on (0, T ),
y∗x(0, t) = y∗x(L, t) on (0, T ),

y∗(·, 0) = esβ̂(0)τ−3/2(0)ŷ0(·) in (0, L),

Since esβ̂h ∈ L2(Q) and 2β̂ < 3β̆ (see eq. (3.3)), we obtain that h∗ + (esβ̂τ−3/2)tŷ ∈ L2(Q), in
particular in L2(0, T ;H−1(0, L)). Furthermore, for ŷ0 ∈ L2(0, L), Proposition 2.3 allows us to have
y∗ ∈ C([0, T ];L2(0, L)) ∩ L2(0, T ;H1(0, L)).

By considering v̂ defined in (4.11), the bilinear form (4.9) and the identity (4.10), we can deduce
(4.8). This concludes the sketch of the proof of Proposition 4.1.

5 Local exact controllability to trajectories

In this section we give the proof of Theorem 1.2 through fixed point arguments. In order to apply
the results obtained in the previous sections we consider the following change of variable. Let us set
y − y =: z and use this equality in (1.2), where y solves (1.3). It is easy to verify that z satisfies

zt + zxxx − ν(t)zxx + (zy)x + zzx = v1ω in Q,
z(0, t) = z(L, t) = 0 on (0, T ),
zx(0, t) = zx(L, t) on (0, T ),
z(·, 0) = y0 − y0 in (0, L).

(5.1)

observe that this changes reduce our problem to a local null controllability for the solution z of the
nonlinear problem (5.1),i.e., we are looking a function control v such that z solution of (5.1) satisfies

z(·, T ) = 0 in (0, L). (5.2)

To do this, we will use the following inverse mapping theorem (see [1]).

Theorem 5.1. Suppose that B1,B2 are Banach spaces and A : B1 → B2 is a continuously differentiable
map. We assume that for b01 ∈ B1, b

0
2 ∈ B2 the equality

A(b01) = b02 (5.3)

holds and A′(b01) : B1 → B2 is an epimorphism. Then there exists δ > 0 such that for any b2 ∈ B2 which
satisfies the condition ‖b02 − b2‖B2 < δ there exists a solution b1 ∈ B1 of the equation

A(b1) = b2.
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In our framework, we use the above theorem with the spaces

B1 := E and B2 := L2(e2sβ̂τ−5/2(0, T );L2(0, L))× L2(0, L)

and the operator A : B1 → B2 defined by A(z, v) := (zt + zxxx − ν(t)zxx + (zy)x + zzx − v1ω, z(0)), for
all (z, v) ∈ E.
In order to apply Theorem 5.1, it is necessary to prove that A is of class C1(B1,B2). We start by
assuming that y ∈ C([0, T ];L2(0, L)) ∩ L2(0, T ;H1(0, L)). Observe that all terms in the definition of
A are linear (and consequently C1), except for zzx. Thus, we will prove that the bilinear operator

((z1, v1), (z2, v2))→ 1
2 (z1z2)x is continuous from E ×E to L2(e2sβ̂τ−5/2(0, T );L2(0, L)). In fact, notice

that
esβ̂τ−3/2z ∈ C([0, T ];L2(0, L)) ∩ L2(0, T ;H1(0, L)), ∀(z, v) ∈ E.

Then, we have

‖e2sβ̂τ−5/2(z1z2)x‖L2(Q) ≤ C

T∫
0

e2sβ̂τ−3‖z1(·, t)‖2L∞(0,L)e
2sβ̂τ−3‖z2(·, t)‖2H1(0,L)

+e2sβ̂τ−3‖z2(·, t)‖2L∞(0,L)e
2sβ̂τ−3‖z1(·, t)‖2H1(0,L)dt

≤ C‖z1‖B1
‖z2‖B1

.

Now, observe that A′(0, 0) : B1 → B2 is given by

A′(0, 0)(z, v) = (zt + zxxx − azxx + (zy)x − v1ω, z(0))), ∀(z, v) ∈ B1.

However, the null controllability result proved in Proposition 4.1 allows to deduce that the previous
functional is surjective.

Therefore, an application of Theorem 5.1 gives the existence of a positive number δ such that, if
‖z(0)‖L2(0,L) ≤ δ, we can find a control v and an associated solution z to (5.1) satisfying (5.2). This
finishes the proof of Theorem 1.2.
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[9] E. Cerpa. Exact controllability of a nonlinear Korteweg-de Vries equation on a critical spatial
domain. SIAM J. Control Optim., 46(3):877–899, 2007.

19
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