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Abstract. These notes are intended to be a tutorial material revisiting in

an almost self-contained way, some control results for the Korteweg-de Vries

(KdV) equation posed on a bounded interval. We address the topics of bound-
ary controllability and internal stabilization for this nonlinear control system.

Concerning controllability, homogeneous Dirichlet boundary conditions are

considered and a control is put on the Neumann boundary condition at the
right end-point of the interval. We show the existence of some critical domains

for which the linear KdV equation is not controllable. In despite of that, we

prove that in these cases the nonlinearity gives the exact controllability. Re-
garding stabilization, we study the problem where all the boundary conditions

are homogeneous. We add an internal damping mechanism in order to force the

solutions of the KdV equation to decay exponentially to the origin in L2-norm.

1. Introduction. In 1834 John Scott Russell, a Scottish naval engineer, was ob-
serving the Union Canal in Scotland when he unexpectedly witnessed a very special
physical phenomenon. He saw a particular wave traveling through this channel
without losing its shape or velocity. He was so captivated by this event that he
focused his attention on these waves for several years and asked the mathematical
community to find a specific mathematical model describing them.

A number of researchers took up Russell’s challenge, among them the French
mathematician Joseph Boussinesq and the English physicist Lord Rayleigh. In
1895 the Dutch mathematicians Diederik J. Korteweg and his student Gustav de
Vries published the article [27] deriving the equation (up to rescaling)

yt + yxxx + 6yyx = 0, x ∈ R, t ≥ 0,

where y = y(t, x) models for a time t the amplitude of the water wave at position
x. This equation describes approximately long waves in water of relatively shallow
depth. A very good book to understand both physical motivation and deduction of
the KdV equation, is the book by Whitham [48].

This nonlinear dispersive partial differential equation, named Korteweg-de Vries
equation (often abbreviated as the KdV equation), has the important property of
allowing solutions describing the phenomenon discovered by Russell. The study of
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the well-posedness of this equation has motivated a huge development of different
tools and techniques. We refer the interested reader to the books [46] by Tao and
[30] by Linares and Ponce, where the KdV equation and other nonlinear dispersive
partial differential equations are studied.

In these notes, we are interested in control properties of the KdV equation posed
on a bounded interval. In this case, as suggested in [5], the extra term yx should
be incorporated in the equation in order to obtain an appropriate model for water
waves in a uniform channel when coordinates x is taken with respect to a fixed
frame. Thus, the equation considered here is

yt + yx + yxxx + yyx = 0, x ∈ [0, L], t ≥ 0,

for some L > 0.
From a mathematical point of view, a control system is a dynamical system on

which we can act by means of a control in order to reach some goal. In this paper
we consider a control system where the state, at each time, is given by the solution
of the KdV equation and where the control is some term in the equation. If the
control is a term distributed in a region of the domain (for instance, a source term),
one calls that an internal control. On the other hand, if the control is a term on
a region of the boundary (for instance, a boundary condition), one calls that a
boundary control.

There are different notions which appear in control theory of partial differential
equations. One says that a control system is exactly controllable in time T if for
any pair of given states, one can find a control steering the system from the first
one at time t = 0 to the second one at time t = T . If one can drive the system as
close as one wants to any state, one says that the approximate controllability holds.
If a system can be driven, by means of a control, from any state to the origin, one
says that the system is null controllable. We can also consider stability properties.
A system is said to be asymptotically stable if the solution of the system without
control converges as the time goes to infinity to a stationary solution of the partial
differential equation. If this convergence holds with a control depending, at time
t, on the state at time t only, one says that the system is stabilizable by means of
a feedback law. Some good references concerning the control of partial differential
equations are the review by Russell [40], and the books by Lions [31] and by Coron
[17].

Regarding the KdV equation, the first results about control properties as con-
trollability and stabilization were obtained by Russell and Zhang in [41] and [42]
for a system with periodic boundary conditions and with an internal control. In
the case of a boundary control, always with periodic boundary conditions, the first
reference is [42] by the same authors and [45] by Sun.

These notes are concerned first with the controllability in the non periodic frame-
work. Rosier studies in [36] the controllability of the KdV equation posed on a finite
interval (0, L). The homogeneous Dirichlet boundary condition is considered and
the control acts on the Neumann data at the right end-point of the interval. He
uses the classical approach of considering first the linearized system around the
origin and then to come back to the nonlinear system by means of a fixed point
theorem. He proves that if this value L does not belong to a set of critical values,
the linear system is exactly controllable and the nonlinear one as well. When L is
a critical value, he also proves that the linear system is not controllable because of
the existence of a finite-dimensional subspace of unreachable states. Later on, in a
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series of papers [18, 7, 9], the exact controllability of the nonlinear KdV equation
has been proven in the case of critical domains. Concerning controllability, these
notes can be seen as a compilation of those papers.

The other topic we address here is the stabilization of KdV by considering an in-
ternal damping term and homogeneous boundary data. We prove that this internal
feedback control forces the solutions of KdV to decay exponentially to zero in L2-
norm. This feedback prevents the existence of solutions whose energy do not decay
to zero. Those solutions are linked to the critical domains appeared in the study
of the controllability. In the stabilization part, we focus on the results obtained in
articles [35, 33].

This paper is intended to be a tutorial material revisiting in an almost self-
contained way, the technical results proved in the mentioned papers. For a complete
revision on control results for the KdV equation, we recommend the excellent survey
[39] by Rosier and Zhang.

At the end of this paper, we discuss some open problems related to the KdV
control system considered here.

1.1. Boundary controllability. Let L > 0 be fixed. Let us consider the following
Korteweg-de Vries (KdV) control system with the Dirichlet boundary condition yt + yx + yxxx + yyx = 0,

y(t, 0) = y(t, L) = 0,
yx(t, L) = h(t),

(1)

where the state is y(t, ·) : [0, L]→ R and the control is h(t) ∈ R. We are concerned
with the exact controllability properties of (1). Let us give some definitions.

Definition 1.1. System (1) is exactly controllable if for any y0, yT ∈ L2(0, L), there
exists a control h ∈ L2(0, T ) such that the solution of (1) with y(0, ·) = y0 satisfies
y(T, ·) = yT .

The classical strategy to study the controllability of (1) is first considering the
system linearized around the origin, which is given by yt + yx + yxxx = 0,

y(t, 0) = y(t, L) = 0,
yx(t, L) = h(t),

(2)

then, to prove that this linear system is exactly controllable and finally to recover
this property for the original nonlinear system by means of a fixed-point argument
for instance. This strategy does not give the exact controllability but a local version.

Definition 1.2. System (1) is locally exactly controllable if there exists r > 0 such
that for any y0, yT ∈ L2(0, L) with

‖y0‖L2(0,L) ≤ r, ‖yT ‖L2(0,L) ≤ r,
there exists a control h ∈ L2(0, T ) such that the solution of (1) with y(0, ·) = y0
also satisfies y(T, ·) = yT .

Rosier proved that the linearized control system (2) is not controllable if L be-
longs to a set of critical lengths. More precisely he proved the following.

Theorem 1.3. [36, Theorem 1.2] Let T > 0. The system (2) is exactly controllable
if and only if

L /∈ N :=

{
2π

√
k2 + k`+ `2

3
; k, ` ∈ N∗

}
. (3)
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Indeed, there exists a finite-dimensional subspace of L2(0, L), denoted by M ,
which is unreachable for the linear system. More precisely, for every non zero
state ψ ∈ M , for every h ∈ L2(0, T ) and for every y ∈ C([0, T ], L2(0, L)) ∩
L2(0, T,H1(0, L)) satisfying (2) and y(0, ·) = 0, one has y(T, ·) 6= ψ.

For the nonlinear system the local exact controllability holds.

Theorem 1.4. [36, Theorem 1.3] Let T > 0 and assume that L /∈ N . Then there
exists r > 0 such that, for every (y0, yT ) ∈ L2(0, L)2 with ‖y0‖L2(0,L) < r and

‖yT ‖L2(0,L) < r, there exist h ∈ L2(0, T ) and

y ∈ C([0, T ], L2(0, L)) ∩ L2(0, T,H1(0, L))

satisfying (1), y(0, ·) = y0 and y(T, ·) = yT .

If one is allowed to use more that one boundary control input, there is no critical
spatial domains and the exact controllability holds for any L > 0. More precisely,
let us consider the nonlinear control system{

yt + yx + yxxx + yyx = 0,
y(t, 0) = h1(t), y(t, L) = h2(t), yx(t, L) = h3(t),

(4)

where the controls are h1(t), h2(t) and h3(t). As it has been pointed out by Rosier
in [36], for every L > 0 the system (4) with h1 ≡ 0 is locally exactly controllable
in L2(0, L) around the origin. Moreover, using all the three control inputs, Zhang
proved in [50] that for every L > 0 the system (4) is exactly controllable in the
space Hs(0, L) for any s ≥ 0 in a neighborhood of a given smooth solution of the
KdV equation. As it has been proven in [37, 24], the system with only h1 as control
input (h2 ≡ h3 ≡ 0) can be proved to be null-controllable, which means that the
system can be driven from any initial data to zero. If we consider any combination
of two controls (h1 and h2 or h1 and h3), then the system is exactly controllable
for any domain. See [25].

Coron and Crépeau in [18] have proved local exact controllability of (1) for the
critical lengths L = 2kπ with k ∈ N∗ satisfying

@(m,n) ∈ N∗ × N∗ with m2 +mn+ n2 = 3k2 and m 6= n. (5)

For these values of L, the subspace M of missed directions is one-dimensional and is
generated by the function (1−cos(x)). Their method consists, first, in moving along
this direction by performing a power series expansion of the solution and then, in
using a fixed point theorem.

Remark 1. Condition (5) has been communicated to the author by J.-M. Coron
and E. Crépeau. They pointed out that if it is not satisfied, then the dimension of
the missed directions subspace is higher than one and the proof given in [18] does
not work anymore.

Later on, in [7, 9] the method by Coron and Crépeau is applied to address the
case of any critical length. Thus, the final local result is given next.

Theorem 1.5. [18, 7, 9] For any L ∈ N there exists TL > 0 such that for any T >
TL, there exists r > 0 such that for every (y0, yT ) ∈ L2(0, L)2 with ‖y0‖L2(0,L) < r

and ‖yT ‖L2(0,L) < r, there exist h ∈ L2(0, T ) and

y ∈ C([0, T ], L2(0, L)) ∩ L2(0, T,H1(0, L))

satisfying (1), y(0, ·) = y0 and y(T, ·) = yT .

The goal of Section 3 is to explain the proofs of Theorems 1.3, 1.4 and 1.5.
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1.2. Internal stabilization. From the existence of critical domains, we have the
existence of some solutions of the linear KdV equation whose energy does not decay
to zero as the time goes to infinity. Thus, it is not clear whenever the solutions of
the nonlinear KdV equation go to zero. In order to avoid this phenomena, we add
to the equation an internal control term F , possibly localized on a small subdomain
of [0, L]

yt + yx + yxxx + yyx = F.

The goal is to design a control which dissipates enough energy to force the decay
of the solutions in L2-norm. We look for a control in the form F = F (y), which
is called a feedback law. A feedback control is one so that at time t it does not
depend on the initial state but on the state at the same time t. The input (control)
depends on the output (the full state or a measure of it) in a closed form.

We consider controls in the form F (y) = −ay, where a ∈ L∞(0, L) satisfies{
a(x) ≥ a0 > 0, ∀x ∈ ω,
where ω is nonempty open subset of (0, L).

(6)

In this way, we are concerned with the equation yt + yx + yxxx + ay + yyx = 0,
y(t, 0) = y(t, L) = yx(t, L) = 0,
y(0, x) = y0.

(7)

As in the study of the controllability, a natural strategy is to consider first the
linearized equation around the origin. Thus, we consider yt + yx + yxxx + ay = 0,

y(t, 0) = y(t, L) = yx(t, L) = 0,
y(0, x) = y0,

(8)

and prove the exponential decay of its solutions in the following result.

Theorem 1.6. [35, Theorem 2.2] Let L > 0 and a = a(x) satisfying (6). There
exist C > 0 and µ > 0 such that

‖y(t, x)‖L2(0,L) ≤ Ce−µt‖y0‖L2(0,L), ∀t ≥ 0

for any solution of (8) with y0 ∈ L2(0, L).

In the proof of Theorem 1.6, we will see that we can take a = 0 if the domain is
not critical (L /∈ N ).

Using a perturbative argument, a local version of this theorem for equation (7)
is also given in [35] by adding a smallness condition on the initial data.

Theorem 1.7. [35, Section 3.3] Let L > 0 and a = a(x) satisfying (6). There exist
C, r > 0 and µ > 0 such that

‖y(t, x)‖L2(0,L) ≤ Ce−µt‖y0‖L2(0,L), ∀t ≥ 0

for any solution of (7) with ‖y0‖L2(0,L) ≤ r.

Other alternative approach is dealing directly with the nonlinear system (7) with-
out passing by the linear system (8). Thus, the following semi-global stabilization
result can be proven.

Theorem 1.8. [35, 33] Let L > 0, a = a(x) satisfying (6), and R > 0. There exist
C = C(R) > 0 and µ = µ(R) > 0 such that

‖y(t, x)‖L2(0,L) ≤ Ce−µt‖y0‖L2(0,L), ∀t ≥ 0
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for any solution of (7) with ‖y0‖L2(0,L) ≤ R.

The goal of Section 4 is to explain the proofs of Theorems 1.6, 1.7 and 1.8.

Remark 2. Theorem 1.8 has been first proved in [35] by assuming the extra con-
dition

∃δ > 0, (0, δ) ∪ (L− δ, L) ⊂ ω (9)

which has been removed by Pazoto in [33].

Remark 3. Theorem 1.8 still holds for nonlinearities other than yyx. For instance,
in [38] they consider the nonlinearity ypyx with p < 4 (generalized KdV equation)
and in [29] the nonlinearity y4yx (critical generalized KdV equation). Others feed-
back laws can be also considered. In [32] they prove Theorem 1.8 by considering

the feedback control F (y) = (− d2

dx2 y)−11ω instead of F (y) = −ay. Notice that we
have denoted by 1ω the characteristic function of the subset ω.

Remark 4. In this paper, we focus on internal damping mechanisms. Some bound-
ary feedback laws are built in [10] and [8] by using a Gramian approach [47] and
the Backstepping method [28], respectively.

2. Well-posedness. In this section we state the well-posedness framework for the
control systems considered in these notes.

2.1. Linear system. Looking at the linear control system
yt + yx + yxxx = 0,
y(t, 0) = y(t, L) = 0,
yx(t, L) = h(t),
y(0, ·) = y0,

(10)

we find the underlying spatial operator defined by

D(A) = {w ∈ H3(0, L)
/
w(0) = w(L) = w′(L) = 0},

A : w ∈ D(A) ⊂ L2(0, L) 7−→ (−w′ − w′′′) ∈ L2(0, L).

The first step is to consider regular data. Let y0 ∈ D(A) and h ∈ C2([0, T ]) with

h(0) = 0. Consider the function ψ(t, x) = −x(L−x)L h(t) and note that it is very
regular in space and satisfies

ψ(t, 0) = ψ(t, L) = 0, ψx(t, L) = h(t), ψ ∈ C2([0, T ];C∞[0, L]).

Let us define gh := (−ψt−ψx−ψxxx) ∈ C1([0, T ];C∞(0, L)) and z := (y−ψ) that
satisfies  zt = Az + gh,

z(t, 0) = z(t, L) = zx(t, L) = 0,
z(0, ·) = y0,

(11)

It can be proven that operator A is dissipative, which means that∫ L

0

wA(w)dx ≤ 0, ∀w ∈ D(A).

Its adjoint operator A∗, defined by

D(A∗) = {w ∈ H3(0, L)
/
w(0) = w(L) = w′(0) = 0},

A∗ : w ∈ D(A∗) ⊂ L2(0, L) 7−→ (w′ + w′′′) ∈ L2(0, L),
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is also dissipative and therefore A generates a strongly continuous semigroup of
contractions and the following result follows (see [34] and [36]).

Proposition 1. Under previous hypothesis on data y0 and h, there exists a unique
classical solution z ∈ C([0, T ];D(A))∩C1([0, T ];L2(0, L)) of (11). Thus, we get the
existence of a classical solution y ∈ C([0, T ];D(A)) ∩ C1([0, T ];L2(0, L)) to (10).
Moreover, this solution y is unique.

Uniqueness of the solutions for (10) can be proven by using energy estimates
obtained for (11). Next, we obtain some useful inequalities in order to state the well-
posedness framework with less regular data. Pick up a regular function q = q(t, x).
By multiplying (10) by qy and integrating by parts we get after some computations

−
∫ s

0

∫ L

0

(qt+qx+qxxx)|y|2 dxdt+
∫ L

0

q(s, x)|y(s, x)|2 dx−
∫ L

0

q(0, x)|y(0, x)|2 dx

+ 3

∫ s

0

∫ L

0

qx|yx|2 dxdt =

∫ s

0

q(t, L)|h(t)|2 dt−
∫ s

0

q(t, 0)|yx(t, 0)|2 dt. (12)

By choosing q = 1 in (12), we get∫ L

0

|y(s, x)|2 dx+

∫ s

0

|yx(t, 0)|2 dt =

∫ L

0

|y0(x)|2 dx+

∫ s

0

|h(t)|2 dt. (13)

From that we deduce

max
s∈[0,T ]

∫ L

0

|y(s, x)|2 dx ≤
∫ L

0

|y0(x)|2 dx+

∫ T

0

|h(t)|2 dt, (14)

which implies that the solution belongs to C([0, T ];L2(0, L)) provided that y0 ∈
L2(0, L) and h ∈ L2(0, T ). Moreover, from (14) we get

‖y‖2L2(0,T ;L2(0,L)) ≤ T (‖y0‖2L2(0,L) + ‖h‖2L2(0,T )), (15)

and from (13) we deduce that∫ T

0

|yx(t, 0)|2 dt ≤
∫ L

0

|y0(x)|2 dx+

∫ T

0

|h(t)|2 dt, (16)

which implies that yx(t, 0) ∈ L2(0, T ) provided that y0 ∈ L2(0, L) and h ∈ L2(0, T ).
This is a hidden regularity effect.

By choosing q = x and s = T in (12), we get∫ T

0

∫ L

0

|y|2 dx dt+

∫ L

0

x|y0(x)|2 dx+ L

∫ T

0

|h(t)|2dt

=

∫ L

0

x|y(T, x)|2 dx+ 3

∫ T

0

∫ L

0

|yx|2 dxdt (17)

From (17) we obtain

3

∫ T

0

∫ L

0

|yx|2 dx dt ≤
∫ T

0

∫ L

0

|y|2 + L

∫ L

0

|y0(x)|2 dx+ L

∫ T

0

|h(t)|2dt (18)

and by using (15), we get∫ T

0

∫ L

0

|yx|2 dx dt ≤
(
L+ T

3

)(∫ L

0

|y0(x)|2 dx+

∫ T

0

|h(t)|2dt

)
(19)
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which implies that the solution belongs to L2(0, T ;H1(0, L)) provided that y0 ∈
L2(0, L) and h ∈ L2(0, T ).

Furthermore, by choosing q = (T − t) in (12), we get

T

∫ L

0

|y0(x)|2 dx ≤ T
∫ T

0

|yx(t, 0)|2 dt+

∫ T

0

∫ L

0

|y|2 dt. (20)

which will be useful later.
We have considered the framework of classical solutions y ∈ C([0, T ];D(A)) ∩

C1([0, T ];L2(0, L)) when y0 ∈ D(A) and h belongs to {h ∈ C2([0, L])
/
h(0) = 0}.

By using the density of D(A) in L2(0, L), the density of {h ∈ C2([0, L])
/
h(0) = 0}

in L2(0, T ), and inequalities (14), (16) and (19), we can extend the notion of solution
for less regular data y0 ∈ L2(0, L) and h ∈ L2(0, T ). Thus, we obtain what is called
a mild solution in the space C([0, T ];L2(0, L)) ∩ L2(0, T ;H1(0, L)).

Proposition 2. [36, Proposition 3.7] Let y0 ∈ L2(0, L) and h ∈ L2(0, T ). Then
there exists a unique mild solution y ∈ C([0, T ];L2(0, L)) ∩ L2(0, T ;H1(0, L)) of
(10). Moreover, there exists C > 0 such that the solutions of (10) satisfy

‖y‖C([0,T ];L2(0,L)) + ‖y‖L2(0,T ;H1(0,L)) ≤ C
(
‖y0‖2L2(0,L) + ‖h‖2L2(0,T )

)1/2
and the extra regularity

‖yx(·, 0)‖L2(0,T ) ≤
(
‖y0‖2L2(0,L) + ‖h‖2L2(0,T )

)1/2
.

In order to be able to consider the nonlinear KdV equation we need a well-
posedness result with a right hand side.

Proposition 3. [36, Proposition 4.1] Let y0 ∈ L2(0, L), f ∈ L1(0, T ;L2(0, L)) and
h ∈ L2(0, T ). Then there exists a unique mild solution y ∈ C([0, T ];L2(0, L)) ∩
L2(0, T ;H1(0, L)) of 

yt + yx + yxxx = f,
y(t, 0) = y(t, L) = 0,
yx(t, L) = h(t),
y(0, ·) = y0.

(21)

Moreover, there exists C > 0 such that the solutions of (21) satisfy

‖y‖C([0,T ];L2(0,L)) + ‖y‖L2(0,T ;H1(0,L)) ≤

C
(
‖y0‖2L2(0,L) + ‖f‖2L1(0,T ;L2(0,L)) + ‖h‖2L2(0,T )

)1/2
.

Proof. From previous results, we only have to consider the case y0 = 0 and h = 0.
In addition, the semigroup theory gives that the (unique) mild solution y belongs
to C([0, T ];L2(0, L)) if the right-hand side belongs to L1(0, T ;L2(0, L)) and there
exists a constant C > 0 such that

‖y‖C([0,T ];L2(0,L)) ≤ C‖f‖L1(0,T ;L2(0,L)).

The only thing we have to prove is that y ∈ L2(0, T ;H1(0, L)). In fact, there

exists a constant C̃ > 0 such that

‖y‖L2(0,T ;H1(0,L)) ≤ C̃‖f‖L1(0,T ;L2(0,L)).
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As in (17) we can write

2

∫ T

0

∫ L

0

xfy dxdt = −
∫ T

0

∫ L

0

|y|2 dx dt+

∫ L

0

x|y(T, x)|2 dx+ 3

∫ T

0

∫ L

0

|yx|2 dxdt

and hence

3

∫ T

0

∫ L

0

|yx|2 dxdt ≤
∫ T

0

∫ L

0

|y|2 dx dt+ 2L

∫ T

0

∫ L

0

fy dxdt

≤ T‖f‖2L1(0,T ;L2(0,L)) + 2L

∫ T

0

‖f‖L2(0,L)‖y‖L2(0,L) ≤ (T + 2L)‖f‖2L1(0,T ;L2(0,L)),

which ends the proof.

As we have seen, the following space is very important in this regularity frame-
work. We define the space

B := C([0, T ], L2(0, L)) ∩ L2(0, T,H1(0, L)) (22)

endowed with the norm

‖y‖B = max
t∈[0,T ]

‖y(t)‖L2(0,L) +

(∫ T

0

‖y(t)‖2H1(0,L)dt

)1/2

.

2.2. Nonlinear system. We want to consider the KdV equation. For that, the
first step is to show that the nonlinearity yyx can be considered as a source term of
the linear equation.

Proposition 4. [36, Proposition 4.1] Let y ∈ L2(0, T ;H1(0, L)). Then yyx ∈
L1(0, T ;L2(0, L)) and the map y ∈ L2(0, T ;H1(0, L)) 7−→ yyx ∈ L1(0, T ;L2(0, L))
is continuous.

Proof. Let y, z ∈ L2(0, T ;H1(0, L)). Denoting with the constant K the norm of the
embedding H1(0, L) ↪→ L∞(0, L), we have

‖yyx − zzx‖L1(0,T ;L2(0,L)) ≤
∫ T

0

‖(y − z)yx‖L2(0,L)dt+

∫ T

0

‖z(yx − zx)‖L2(0,L)dt

≤
∫ T

0

‖y − z‖L∞(0,L)‖yx‖L2(0,L)dt+

∫ T

0

‖z‖L∞(0,L)‖yx − zx‖L2(0,L)dt

≤ K
∫ T

0

‖y − z‖H1(0,L)‖y‖H1(0,L)dt+K

∫ T

0

‖z‖H1(0,L)‖y − z‖H1(0,L)dt

≤ K(‖y‖L2(0,T ;H1(0,L)) + ‖z‖L2(0,T ;H1(0,L)))‖y − z‖L2(0,T ;H1(0,L)) (23)

By taking z = 0 we see that yyx ∈ L1(0, T ;L2(0, L)) provided that y lies in
L2(0, T ;H1(0, L)). From (23), we also get that the map

y ∈ L2(0, T ;H1(0, L)) 7−→ yyx ∈ L1(0, T ;L2(0, L))

is continuous.
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Let us state the well posedness property proved by Coron and Crépeau in [18]
for the following nonlinear KdV equation

yt + yx + yx + yyx = f,
y(t, 0) = y(t, L) = 0,
yx(t, L) = h(t),
y(0, ·) = y0.

(24)

Proposition 5. [18, Proposition 14] Let L > 0 and T > 0. There exist ε > 0 and
C > 0 such that, for every f ∈ L1(0, T, L2(0, L)), h ∈ L2(0, T ) and y0 ∈ L2(0, L)
such that

‖f‖L1(0,T,L2(0,L)) + ‖h‖L2(0,T ) + ‖y0‖L2(0,L) ≤ ε,

there exists a unique solution of (24) which satisfies

‖y‖B ≤ C(‖f‖L1(0,T,L2(0,L)) + ‖h‖L2(0,T ) + ‖y0‖L2(0,L)). (25)

Proof. Let f ∈ L1(0, T, L2(0, L)), h ∈ L2(0, T ) and y0 ∈ L2(0, L) as in the theorem
with ε to be chosen later. Given z ∈ B, we consider the map M : B → B defined
by M(z) = ỹ where ỹ is the solution of

ỹt + ỹx + ỹx = f − zzx,
ỹ(t, 0) = ỹ(t, L) = 0,
ỹx(t, L) = h(t),
ỹ(0, ·) = y0.

Clearly y ∈ B is a solution of (24) if and only if y is a fixed point of the map M .
From Proposition 3 and equation (23) we get the existence of a constant D such
that

‖M(z)‖B ≤ D
{
‖f‖L1(0,T ;L2(0,L)) + ‖h‖L2(0,T ) + ‖y0‖L2(0,L) + ‖z‖2B

}
and

‖M(z1)−M(z2)‖B ≤ D(‖z1‖B + ‖z2‖B)(‖z1 − z2‖B)

We consider M restricted to the closed ball {z ∈ B
/
‖z‖B ≤ R} with R to be

chosen later. We can write

‖M(z)‖B ≤ D
{
ε+ ‖z‖2B

}
and

‖M(z1)−M(z2)‖B ≤ 2DR(‖z1 − z2‖B)

If R, ε are small enough so that

R <
1

2D
, ε <

R

2D
,

we can apply the Banach fixed point theorem and prove that a unique fixed point
of M exists.

Remark 5. The smallness condition given by ε in Proposition 5 can be removed
in order to get a global well-posedness result. See [23, 12].

In addition, we have the following result whose proof we omit.
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Proposition 6. [18, Proposition 15] Let T > 0 and let L > 0. There exists
C > 0 such that for every (y01, y02) ∈ L2(0, L)2, (h1, h2) ∈ L2(0, T )2 and (f1, f2) ∈
L1(0, T, L2(0, L))2 for which there exist solutions y1 = y1(t, x) and y2 = y2(t, x) of
(24), one has the following estimates:∫ T

0

∫ L

0

|y1x(t, x)− y2x(t, x)|2dxdt ≤ eC(1+‖y1‖2L2(0,T,H1(0,L))
+‖y2‖2L2(0,T,H1(0,L))

)

·
(
‖h1 − h2‖2L2(0,T ) + ‖f1 − f2‖2L1(0,T,L2(0,L)) + ‖y01 − y02‖2L2(0,L)

)
,

∫ L

0

|y1(t, x)− y2(t, x)|2dx ≤ eC(1+‖y1‖2L2(0,T,H1(0,L))
+‖y2‖2L2(0,T,H1(0,L))

)

·
(
‖h1 − h2‖2L2(0,T ) + ‖f1 − f2‖2L1(0,T,L2(0,L)) + ‖y01 − y02‖2L2(0,L)

)
,

for every t ∈ [0, T ].

3. Boundary controllability.

3.1. Linear system. The exact controllability property says that we can steer the
linear system  yt + yx + yxxx = 0,

y(t, 0) = y(t, L) = 0,
yx(t, L) = h(t),

(26)

from any initial data to any final data. To study that, it is useful to introduce the
notion of set of reachable states from y0, that is defined by

R(y0) = {y(T, ·)
/
y is solution of (26) with y(0, ·) = y0 and h ∈ L2(0, T )}

By the linearity of the equation (26), it is easy to see that

R(y0) = ỹ(T, ·) +R(0),

where ỹ is the solution of (26) with no control (h = 0). Thus, R(y0) = L2(0, L) if
and only if R(0) = L2(0, L) and hence it is enough to study the controllability in
the case y0 = 0.

Let us introduce the linear operator mapping the control to the final state

Π : h ∈ L2(0, T ) 7−→ y(T, ·) ∈ L2(0, L).

From the well-posedness results, we get that this is a bounded operator. Look-
ing at Definition 1.1 we see that exact controllability of (26) is equivalent to the
surjectivity of operator Π. In order to characterize the surjectivity of this operator
we will use the following Functional Analysis result linking this property with Π∗,
the adjoint operator of Π.

Proposition 7. [6, Théorème II.19] Let E,F be two Banach spaces. Let A :
D(A) ⊂ E → F a closed operator with D(A) dense in E. Then, we have:

• A(E) is dense in F if and only if A∗ is injective.
• A(E) = F if and only if there exists a constant C > 0 such that

‖v‖F∗ ≤ C‖A∗(v)‖E∗ , ∀v ∈ D(A∗)

Remark 6. This is a sort of rank-nullity theorem in infinite dimension. If E is
finite dimensional, then A(E) = F is equivalent to the fact that A(E) is dense in
F .
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To apply this proposition, we first look for the operator Π∗ : L2(0, L)→ L2(0, T ).
The symmetry condition is∫ L

0

Π(h)ψdx =

∫ T

0

hΠ∗(ψ)dt, ∀ψ ∈ L2(0, L). (27)

Let us multiply (26) by a function φ = φ(t, x) and integrate on (0, T ) × (0, L).
By choosing φ solution of φt + φx + φxxx = 0,

φ(t, 0) = φ(t, L) = φx(t, 0) = 0,
φ(T, x) = ψ(x)

(28)

and after some integrations by parts we get (27) with Π∗(ψ) defined by

Π∗ : ψ ∈ L2(0, L) 7−→ φx(·, L) ∈ L2(0, T ).

Thanks to the hidden regularity property proved in Proposition 2, we see that
this operator is well defined. Notice that up to the change of variables t→ (T − t)
and x → (L − x), system (28) is the same as (26) with no control. Now, we can
state the following.

Proposition 8. The system (26) is exactly controllable if and only if there exists
a constant C > 0 such that

‖φx(·, L)‖L2(0,T ) ≥ C‖ψ‖L2(0,L), ∀ψ ∈ L2(0, L). (29)

We see that we have translated the controllability problem into an inequality for
system (28). This kind of inequality is called an observability result. Proposition 8
is known as the duality between controllability and observability for the considered
system.

This approach does not give a way to compute the control driving the system
from an initial state to another one. Let us give a more constructive way to prove
that the observability inequality (29) implies the exact controllability. This is called
the Hilbert Uniqueness Method, abbreviated as HUM and introduced by Lions [31].

Given yT ∈ L2(0, T ), we look for a control h ∈ L2(0, T ) such that Π(h) = yT .
This is equivalent to the problem{

To find h ∈ L2(0, T ) such that∫ L
0

Π(h)ψ dx =
∫ L
0
yTψ dx, ∀ψ ∈ L2(0, L)

Looking for h in the particular form h = Π∗(ψ̂), we obtain{
To find h ∈ L2(0, T ) such that∫ T
0

Π∗(ψ̂)Π∗(ψ) dt =
∫ L
0
yTψ dx, ∀ψ ∈ L2(0, L)

(30)

which can be written in a variational version by defining the bounded bilinear form

a : (ψ̂, ψ) ∈ L2(0, L)2 7−→
∫ T

0

Π∗(ψ̂)Π∗(ψ) dt ∈ R

Thanks to (29) the bilinear form is coercive and then the Lax-Milgram theorem

can be applied to solve problem (30). Furthermore, the function ψ̂ defining the
control h, can be found by minimizing in L2(0, L) the following functional

J(ψ) :=
1

2

∫ T

0

|Π∗(ψ)|2 dx−
∫ L

0

yTψ dt.
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Summarizing, we found out ψ̂ the argmin of J and then the control is given by

h = Π∗(ψ̂), i.e., we put ψ̂ as data in (28) getting the solution φ̂ and finally the

control is the trace h = φ̂x(t, L).
Now we focus in the proof of (29). By contradiction, we assume that (29) does

not hold, i.e.,

∀C > 0,∃ψ ∈ L2(0, L) such that ‖φx(·, x)‖L2(0,T ) < C‖ψ‖L2(0,L).

By using this successively with C = 1/n, we obtain a sequence {ψn}n∈N ⊂
L2(0, L) such that ‖ψn‖L2(0,L) = 1 (if not, we could consider the same sequence but

normalized
{

ψn

‖ψn‖L2(0,L)

}
n∈N. This is due to the linearity of the equation) and

‖φnx(·, L)‖L2(0,T ) <
1

n
. (31)

The goal now is to pass to the limit and get a contradiction by finding a nontrivial
solution of (28) with the extra condition ‖φx(·, L)‖L2(0,T ) = 0. Hereafter we will
need estimates (19) and (20) for system (28). Let us write them out.∫ T

0

∫ L

0

|φx|2 dx dt ≤
(
L+ T

3

)∫ L

0

|ψ(x)|2 dx (32)

and

T

∫ L

0

|ψ(x)|2 dx ≤ T
∫ T

0

|φx(t, L)|2 dt+

∫ T

0

∫ L

0

|φ|2 dt. (33)

We apply (32) to the sequence and get∫ T

0

∫ L

0

|φnx |2 dx dt ≤
(
L+ T

3

)∫ L

0

|ψn(x)|2 dx =
L+ T

3
(34)

and therefore we get that φn is bounded in L2(0, T ;H1(0, L)). From the equa-
tion we see that φnt = −φnx − φnxxx is bounded in L2(0, T ;H−2(0, L)) and we can
apply the Aubin-Lions lemma below to conclude that φn is relatively compact in
L2(0, T ;L2(0, L)). Hence, we can assume that φn converges in L2(0, T ;L2(0, L)).

Lemma 3.1. (Aubin-Lions, see [44, Corollary 4]) Let X0 ⊂ X ⊂ X1 be three
Banach spaces with X0, X1 reflexive spaces. Suppose that X0 is compactly embedded
in X and that X is continuously embedded in X1. Then {h ∈ Lp(0, T ;X0) | ḣ ∈
Lq(0, T ;X1)} embeds compactly in Lp(0, T ;X) for any 1 < p, q <∞.

Inequality (33) implies that {ψn}n∈N is a Cauchy sequence and therefore it con-
verges to a function ψ such that ‖ψ‖L2(0,L) = 1. The corresponding solution φ of
(28) satisfies φx(t, L) = 0 but it is not the trivial one. We would like to say that
the system {

φt + φx + φxxx = 0,
φ(t, 0) = φ(t, L) = φx(t, 0) = φx(t, L) = 0,

(35)

is overdetermined and thus getting a contradiction. This is not always possible. For
instance, for the length L = 2π, we can consider φ(t, x) = (1−cos(x)) which clearly
is not zero and satisfy (35).

We have to study the solutions of system (35). For that, we first prove that it is
enough to look for solutions of the form φ(t, x) = eλtϕ(x).
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Proposition 9. [36, proof of Lemma 3.4] There exists a non-trivial solution φ ∈ B
of (35) if and only if there exist a complex number λ and a non-trivial solution
ϕ ∈ H3(0, L) of

{
λϕ+ ϕ′ + ϕ′′′ = 0,
ϕ(0) = ϕ(L) = ϕ′(0) = ϕ′(L) = 0,

(36)

Proof. Obviously a non-trivial solution ϕ of (36) gives a nontrivial solution φ(t, x) =
eλtϕ(x) of (35). The following argument has been used in [1].

Assume that there exists a nontrivial solution φ ∈ B of (35). Let us denote by
N(0, T ) the set of states ψ ∈ L2(0, L) for which the solution of (35) is nontrivial on
[0, T ] and define M(0, T ) the set of solutions of (35) with ψ ∈ N(0, T ). We have
the inclusions N(0, T ) ⊂ L2(0, L) and M(0, T ) ⊂ C([0, T ];L2(0, L)).

We have that N(0, T ) is a finite-dimensional vector space because the unit ball

{w ∈ N(0, T )
/
‖w‖L2(0,L) = 1}

is compact. Indeed, given a sequence on this unit ball, we can prove as before that
there exists a convergent subsequence. This can be done due to the fact that the
elements in N(0, T ) are initial data for solutions of (35). Then, we apply the Riesz
Theorem [6, Théorème VI.5], which says that every normed vector space whose
closed unit ball is compact, has to be finite dimensional.

If ψ ∈ N(0, T ), then there exists ε ∈ (0, T ) such that φ(T − ε) ∈ N(−ε, T − ε)
and so φ(T − ε) ∈ N(0, T ). Thus

φ(T )− φ(T − t)
t

∈ N(0, T ), ∀t ∈ (0, ε) (37)

By using the equation we have φ ∈ H1(−ε, T ;H−2(0, L)) and so

lim
δ→0

φ(·)− φ(· − δ)
δ

= φ′ ∈ L2(0, T ;H−2(0, L))

Moreover, from (37), we have φ(·) − φ(· − δ) ∈ M(0, T ), which is closed in
L2(0, T ;H−2(0, L)) (M(0, T ) is finite-dimensional). Thus φ′ ∈ M(0, T ) and conse-
quently φ ∈ C1([0, T ], L2(0, L)). Hence we get

φ′(T ) = lim
t→0

φ(T )− φ(T − t)
t

∈ N(0, T )

From equation (35) we get ψ ∈ D(A∗), A∗(ψ) = φ′(T ), φ ∈ C([0, T ];L2(0, L))
and therefore φx(t, L) ∈ C([0, T ]). Moreover ψ′(L) = φx(0, 0) = 0.

We consider the operator A∗ restricted to CN(0, T ) where CN(0, T ) denotes the
complexification of N(0, T ). As we are assuming that N(0, T ) is not {0}, we get
that this operator has at least one eigenvalue. Therefore, there exist λ ∈ C and a
nonzero ϕ ∈ D(A) satisfying (36).

Thus, starting from a nontrivial solution of (35), we get a nontrivial solution of
(36), which concludes the proof of this proposition.

We can now give the proof of Theorem 1.3.

Proof of Theorem 1.3. We will get the controllability of system (26) for all domains
(0, L) for which system (36) has only the trivial solution. On the other hand, if
system (36) has a nontrivial solution, the inequality (29) will not hold and the
system (26) will be uncontrollable.
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The solution of (36) has the form ϕ(x) =
∑3
j=1 Cje

αjx where αj are the roots

of x3 + x+ λ = 0. These roots satisfy

α1 + α2 + α3 = 0, (38)

α1α2 + α2α3 + α1α3 = 1, (39)

α1α2α3 = −λ, (40)

and since the four homogeneous boundary conditions, the constants Cj should satisy
1 1 1
α1 α2 α3

eα1L eα2L eα3L

α1e
α1L α2e

α2L α3e
α3L


 C1

C2

C3

 =


0
0
0
0

 . (41)

After some calculations, we get that this system has a nontrivial solution if and
only if the roots satisfy the extra condition

eα1L = eα2L = eα3L. (42)

We then see that, given α1, the other roots are given by

α2 = α1 + ik
2π

L
, α3 = α2 + i`

2π

L
, with k, ` ∈ N.

Using these expressions in (38), (39), (40) we get the roots in terms of k, `

α1 = −i(2k + `)
2π

3L

and the formula for the lenghts for which the system (36) has nontrivial solutions

L = 2π

√
k2 + k`+ `2

3
.

Moreover, the corresponding eigenvalue is

λ = −i 8π3

27L3
(2k + `)(k − `)(k + 2`). (43)

This concludes the proof of Theorem 1.3.

Now, we focus our attention on the domains of critical length. In particular,
we describe the space M of unreachable states for the linear control system (26).
For each L ∈ N , there exist a finite number of pairs {(kj , `j)}nj=1 ⊂ N∗ × N∗ with
kj ≥ `j such that

L = 2π

√
k2j + kj`j + `2j

3
. (44)

Let us introduce the notation

J> := { j ∈ {1, . . . , n} ; kj > lj}, J= := { j ∈ {1, . . . , n} ; kj = lj}, n> := |J>|. (45)

From the proof of Theorem 1.3, we know that for each j ∈ {1, . . . , n} there exist two

non zero real-valued functions ϕj1 = ϕj1(x) and ϕj2 = ϕj2(x) such that ϕj := ϕj1 + iϕj2
is a solution of  −ip

jϕj + ϕj′ + ϕj′′′ = 0,
ϕj(0) = ϕj(L) = 0,
ϕj′(0) = ϕj′(L) = 0,

(46)
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where, for (k, `) ∈ N∗ × N∗, pj is defined by

pj :=
(2k + `)(k − `)(2`+ k)

3
√

3(k2 + kl + l2)3/2
. (47)

Easy computations lead to

ϕj1 = C
(

cos(γj1x)− γj1−γ
j
3

γj2−γ
j
3

cos(γj2x) +
γj1−γ

j
2

γj2−γ
j
3

cos(γj3x)
)
,

ϕj2 = C
(

sin(γj1x)− γj1−γ
j
3

γj2−γ
j
3

sin(γj2x) +
γj1−γ

j
2

γj2−γ
j
3

sin(γj3x)
)
,

(48)

where C is a constant and γjm = −iαjm with m = 1, 2, 3 and αjm three roots of

x3 + x+ ip(kj , `j) = 0.

One can easily verify that these roots are given by

γj1 = −2π

L

(
2kj + `j

3

)
, γj2 = γj1 +

2πkj
L

, γj3 = γj2 +
2π`j
L

. (49)

Moreover, by choosing the constant C, we can assume that

‖ϕj1‖L2(0,L) = ‖ϕj2‖L2(0,L) = 1.

Lemma 3.2. With the previous notations, we get

1. If j ∈ J>, then pj 6= 0.
2. If j ∈ J=, then pj = 0.
3. If i 6= j, then pi 6= pj.

Proof. Items 1. and 2. are obvious from (45) and (47). Let i, j ∈ J such that

pi = pj . Then, γik = γjk for k = 1, 2, 3. With the definitions of γjk, (49) we obtain
ki = kj , `i = `j and hence i = j.

Remark 7. We can easily notice that |J=| ≤ 1.

Thus we can reorganize the indexes such that

p1 > p2 > · · · > pn ≥ 0.

With this notation, we define,

• for j ∈ J>, the subspace of L2(0, L)

Mj := {λ1ϕj1 + λ2ϕ
j
2; λ1, λ2 ∈ R} = 〈ϕj1, ϕ

j
2〉,

• for j ∈ J=, the subspace of L2(0, L)

Mj := {λ(1− cosx); λ ∈ R} = 〈1− cos(x)〉.
Then, one can define the following subspaces of L2(0, L)

M :=

n⊕
j=1

Mj and H := M⊥.

Note that either
n>⋃
j=1

{ϕj1, ϕ
j
2} (if L 6= 2πk for any k)

or

{1− cos(x)}
n>⋃
j=1

{ϕj1, ϕ
j
2} (if L = 2πk for some k)

is an orthogonal basis from M .
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Remark 8. If pj = 0 for some j ∈ {1, . . . , n}, then ϕj1 = ϕj2 = 1− cos(x). It occurs
when kj = `j , i.e., if L = 2πkj . If kj satisfies the condition (5), then the space M
is one-dimensional. This is the case treated in [18]. It corresponds for example to
the length L = 2π.

If pj 6= 0, it is easy to see that ϕj1 ⊥ ϕ
j
2. Moreover, for distinct j1, j2 ∈ {1, . . . , n},

ϕj1m ⊥ ϕj2s for m, s = 1, 2. Let us give some examples. The pair (2, 1) defines a
critical length for which the space M is two-dimensional. The pair (11, 8) defines a
critical length for which the space M is four-dimensional since the pairs (11, 8) and
(16, 1) define the same critical length.

At this point, we can state the following controllability result in H, which follows
directly from what we have done.

Theorem 3.3. [36, Propositions 3.3 and 3.9] Let T > 0. For every (y0, yT ) ∈ H ×
H, there exist h ∈ L2(0, T ) and y ∈ B satisfying (26), y(0, ·) = y0 and y(T, ·) = yT .

Next section will be devoted to study the controllability of the nonlinear system.
To do that, it is important to know how the linear system evolves in a critical case.

Let us define the set N ′ by

N ′ :=

{
2π

√
k2 + k`+ `2

3
; (k, `) ∈ N∗ × N∗ satisfying k > `, and (51)

}
, (50)

∀m,n ∈ N∗\{k}, k2 + k`+ `2 6= m2 +mn+ n2. (51)

It is easy to see that N ′ is the set of critical lengths for which the space of un-
reachable states is two-dimensional. Indeed, let L ∈ N ′, from (51) there exists a
unique pair (k1, `1) := (k, `) satisfying (44) and since k1 > `1, p1 > 0 and therefore
the functions ϕ1

1, ϕ
1
2 are orthogonal.

Following the proof of Proposition 8.3 in [17], it is possible to see thatN ′ contains
an infinite number of elements. Let q ≥ 1 be an integer satisfying

∀m,n ∈ N∗\{q}, m2 +mn+ n2 6= 7q2. (52)

Let us consider the critical length Lq defined by the pair (2q, q), that is

Lq := 2π

√
(2q)2 + 2q2 + q2

3
= 2πq

√
7

3
.

From (52), it is easy to see that Lq ∈ N ′. One can verify that (52) holds for
q = 1, 2, 3 and therefore L1, L2, L3 ∈ N ′. Moreover, the following lemma, whose
proof is omitted, says that the set N ′ contains an infinite number of lengths Lq.

Lemma 3.4. [7, Lemma 2.5] There are infinitely many positive integers q satisfying
(52).

We consider L ∈ N ′. From (51), for each L ∈ N ′ we can define a unique

p :=
(2k + `)(k − `)(2`+ k)

3
√

3(k2 + k`+ `2)3/2
.

The space M is then defined by

M := 〈ϕ1, ϕ2〉 = {αϕ1 + βϕ2 ; α, β ∈ R}
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where ϕ1 and ϕ2 are given by

ϕ1 =
(

cos(γ1x)− γ1−γ3
γ2−γ3 cos(γ2x) + γ1−γ2

γ2−γ3 cos(γ3x)
)
,

ϕ2 =
(

sin(γ1x)− γ1−γ3
γ2−γ3 sin(γ2x) + γ1−γ2

γ2−γ3 sin(γ3x)
)
,

(53)

with γm = −iαm, and αm are the roots of x3 + x+ ip = 0. From (46) we also have
that ϕ1 and ϕ2 satisfy  ϕ′1 + ϕ′′′1 = −pϕ2,

ϕ1(0) = ϕ1(L) = 0,
ϕ′1(0) = ϕ′1(L) = 0,

(54)

and  ϕ′2 + ϕ′′′2 = pϕ1,
ϕ2(0) = ϕ2(L) = 0,
ϕ′2(0) = ϕ′2(L) = 0.

(55)

Now, we investigate the evolution of the projection on the subspace M of a
solution of (26). Let us consider (y, h) ∈ B × L2(0, T ) satisfying (26). Let us
multiply (54) by y and integrate on [0, L]. Using integrations by parts we get

d

dt

(∫ L

0

y(t, x)ϕ1(x)dx

)
= −p

∫ L

0

y(t, x)ϕ2(x)dx. (56)

Similarly, multiplying (55) by y, we get

d

dt

(∫ L

0

y(t, x)ϕ2(x)dx

)
= p

∫ L

0

y(t, x)ϕ1(x)dx. (57)

Hence, from (56) and (57), we obtain∫ L

0

y(t, x)ϕ1(x) dx =

∫ L

0

y(0, x)(cos(p t)ϕ1(x)− sin(p t)ϕ2(x)) dx, (58)∫ L

0

y(t, x)ϕ2(x) dx =

∫ L

0

y(0, x)(sin(p t)ϕ1(x) + cos(p t)ϕ2(x)) dx. (59)

From (58) and (59), we see that the projection on M of y(t, ·), denoted PM (y(t, ·)),
only turns in this two-dimensional subspace and therefore conserves its L2(0, L)
norm. The period of this rotation is 2π/p. Furthermore, we see that if the initial
condition y(0, ·) lies in H, so does the solution for every time t. Combining this
rotation with Theorem 3.3, we obtain the following proposition.

Proposition 10. Let y0, y1 ∈ L2(0, L) be such that

‖PM (y0)‖L2(0,L) = ‖PM (y1)‖L2(0,L).

Then, there exists t∗ ≤ 2π
p and u ∈ L2(0, t∗) such that the solution y of (26) with

y(0, ·) = y0, satisfies y(t∗, ·) = y1.

Proof. Let yM = yM (t, x) be the solution of (26) with yM (0, ·) = PM (y0) and
without control (h ≡ 0). We know that there exists a time 0 < t∗ ≤ 2π

p such that

yM (t∗, ·) = PM (y1). On the other hand, from Theorem 3.3 there exists a control
hH ∈ L2(0, t∗) such that the corresponding solution yH = yH(t, x) of (26) satisfies

yH(0, ·) = PH(y0) ∈ H and yH(t∗, ·) = PH(y1).
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Then y(t, x) := yH(t, x) + yM (t, x) satisfies (26) with h = hH , y(0, ·) = y0 and
y(t∗, ·) = y1, which ends the proof of this proposition.

Our proof of (29) is by contadiction, which do not allow to know the observability
constant. Let us give a direct proof of (29). The drawback is this proof does not
work for any couple (L, T ).

Proposition 11. If T, L satisfy

L3

3Tπ2
+

L2

3π2
< 1, (60)

then inequality (29) holds.

Proof. From (33) we obtain

‖ψ‖2L2(0,L) ≤ ‖φx(·, L)‖2L2(0,T ) +
1

T
‖φ‖2L2((0,T )×(0,L)) (61)

By using Poincaré’s inequality in (61), we get∫ L

0

|ψ(x)|2 dx ≤ L2

π2T

∫ T

0

∫ L

0

|φx|2 dxdt+

∫ T

0

|φx(t, L)|2 dt (62)

From (32) we can write∫ L

0

|ψ(x)|2 dx ≤ L2

π2T

(
L+ T

3

)∫ L

0

|ψ|2 dx+

∫ T

0

|φx(t, L)|2 dt (63)

and therefore if (60) holds, we obtain the observability inequality (29) with constant

C =
3Tπ2

3Tπ2 − L3 − TL2
. (64)

Remark 9. Condition (60) can be satisfied only for L < π
√

3 and a time of control
T large enough

T >
L3

3π2 − L2
.

We see in (60) that if L > π
√

3 we can not obtain the explicit observability in
this way. Notice that the first critical value is L = 2π.

3.2. Nonlinear system on a noncritical interval. In this section, we study the
local controllability property of system yt + yx + yxxx + yyx = 0,

y(t, 0) = y(t, L) = 0,
yx(t, L) = h(t),

(65)

when the domain is not critical (L /∈ N ).

Proof of Theorem 1.4. Let L /∈ N . Let y0, yT ∈ L2(0, L) be such that ‖y0‖L2(0,L) ≤
r and ‖yT ‖L2(0,L) ≤ r with r > 0 to be chosen later on.

We define the map

Π : y ∈ B 7−→ y1 + y2 + y3 ∈ B
where y1, y2 are the solutions of y1t + y1x + y1xxx = 0,

y1(t, 0) = y1(t, L) = y1x(t, L) = 0,
y1(0, x) = y0(x),

(66)
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 y2t + y2x + y2xxx = −yyx,
y2(t, 0) = y2(t, L) = y2x(t, L) = 0,
y2(0, x) = 0,

(67)

and y3 is the solution of 
y3t + y3x + y3xxx = 0,
y3(t, 0) = y3(t, L) = 0,
y3x(t, L) = h(t),
y3(0, x) = 0,

(68)

with h the control such that y3(T, ·) = yT − y1(T, ·) − y2(T, ·). This control exists
because of Theorem 1.3. It is important to notice that the control operator yT 7−→ h
mapping the final state to the control driving the linear system to that state, is
continuous.

In order to prove Theorem 1.4, we have to find a fixed point to the map Π. We
will apply the Banach fixed-point Theorem.

Let BR = {y ∈ L2(0, T ;H1(0, L))
/
‖y‖L2(0,T ;H1(0,L)) ≤ R} with R to be chosen

later. By choosing R, r small enough, we can prove that

Π(BR) ⊂ BR

and

∃C ∈ (0, 1),∀y, z ∈ BR, ‖Π(y)−Π(z)‖B ≤ C‖y − z‖L2(0,T ;H1(0,L))

and therefore the Banach fixed-point theorem applies. Indeed, from previous com-
putation and the continuity of the control operator, we get

‖Π(y)‖B ≤ C1‖y0‖L2(0,L) + C2‖yT ‖L2(0,L) + C3‖yyx‖L1(0,T ;L2(0,L))

≤ C1‖y0‖L2(0,L) + C2‖yT ‖L2(0,L) + C3‖y‖2B ≤ (C1 + C2)r + C3R
2

where hereafter Cj denote positive constants. We get thus the first condition:
(C1 + C2)r + C3R

2 ≤ R. Moreover we get

‖Π(y)−Π(z)‖B ≤ 2C4R‖y − z‖B

that impose the second condition: 2C4R < 1. These conditions are satisfied for
instance if we choose r,R such that

R < min
{ 1

2C4
,

1

2C3

}
, r <

R

2(C1 + C2)
.

That ends the proof of Theorem 1.4.

3.3. Nonlinear system on a critical interval. In this section, we consider a
critical domain (L ∈ N ) and we want to prove Theorem 1.5. The method applied is
a classical approach to study the local controllability of a finite-dimensional control
system and it has been applied in [18] to prove the local exact controllability around
the origin of the control system (65) for some critical domains for which the space
of unreachable states is one-dimensional. First, we apply this method to deal with
the case dim(M) = 2. Next, we explain what happens in the case dim(M) = 1 and
in the general case.
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3.3.1. M is two-dimensional. Let us first explain the general idea of the method.
Let y = y(t, x) be a solution of (65) with control h = h(t). We consider a power
series expansion of (y, h) with the same scaling on the state and on the control

y = εα+ ε2β + ε3γ + . . .

h = εu+ ε2v + ε3w + . . .

In this way, we see that the nonlinear term is given by

yyx = ε2ααx + ε3αβx + ε3βαx + (higher order terms)

and therefore, for a small ε, we have the expansion of second order y ≈ εα + ε2β,
where α and β are given by

αt + αx + αxxx = 0,
α(t, 0) = α(t, L) = 0,
αx(t, L) = u(t),
α(0, ·) = 0

(69)

and 
βt + βx + βxxx = −ααx,
β(t, 0) = β(t, L) = 0,
βx(t, L) = v(t),
β(0, ·) = 0.

(70)

The strategy consists first, in proving that the expansion to the second order of
y = y(t, x), i.e., εα + ε2β, can reach all the missed directions and then, in using a
fixed point argument to prove that it is sufficient to get Theorem 1.5.

Let us see that we can “enter” into the subspace M . More precisely, the result
we prove is the following one.

Proposition 12. Let T > 0. There exists (u, v) ∈ L2(0, T )2 such that if α = α(t, x)
and β = β(t, x) are the solutions of (69) and (70), respectively, then

α(T, ·) = 0 and β(T, ·) ∈M\{0}.

Proof. In order to study the trajectory β = β(t, x), we set β = βu + βv where
βu = βu(t, x) and βv = βv(t, x) are the solutions of

βut + βux + βuxxx = −ααx,
βu(t, 0) = βu(t, L) = 0,
βux (t, L) = 0,
βu(0, ·) = 0,

(71)

and 
βvt + βvx + βvxxx = 0,
βv(t, 0) = βv(t, L) = 0,
βvx(t, L) = v(t),
βv(0, ·) = 0.

(72)

If u ∈ L2(0, T ) is given, by Theorem 3.3 one can find v ∈ L2(0, T ) such that

βv(T, ·) = −PH(βu(T, ·))
and thus β(T, ·) = PM (βu(T, ·)). From this fact, one sees that the proof of Propo-
sition 12 can be reduced to prove

∃u ∈ L2(0, T ) such that α(T, ·) = 0 and PM (βu(T, ·)) 6= 0. (73)
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Let u ∈ L2(0, T ). Let us multiply (71) by ϕ1 and integrate the resulting equality
on [0, L]. Then, using integration by parts, (54), boundary and initial conditions in
(71), one gets

d

dt

(∫ L

0

βu(t, x)ϕ1(x)dx

)
= −p

∫ L

0

βu(t, x)ϕ2(x)dx+
1

2

∫ L

0

α2(t, x)ϕ′1(x)dx.

In a similar way, if we now multiply (71) by ϕ2, we get

d

dt

(∫ L

0

βu(t, x)ϕ2(x)dx

)
= p

∫ L

0

βu(t, x)ϕ1(x)dx+
1

2

∫ L

0

α2(t, x)ϕ′2(x)dx.

If we call

ηk(t) :=

∫ L

0

βu(t, x)ϕk(x)dx for k = 1, 2,

we can write the system
(
η̇1(t)
η̇2(t)

)
=

(
0 −p
p 0

)(
η1(t)
η2(t)

)
+

(
1
2

∫ L
0
α2(t, x)ϕ′1(x)dx

1
2

∫ L
0
α2(t, x)ϕ′2(x)dx

)
η1(0) = 0, η2(0) = 0.

(74)

The solution of (74) is given by(
η1(t)
η2(t)

)
=

(
cos(p t) − sin(p t)
sin(p t) cos(p t)

)(
I1(t)
I2(t)

)
where

I1(t) :=
1

2

∫ t

0

∫ L

0

α2(s, x)(cos(ps)ϕ′1(x) + sin(ps)ϕ′2(x))dx ds,

I2(t) :=
1

2

∫ t

0

∫ L

0

α2(s, x)(− sin(ps)ϕ′1(x) + cos(ps)ϕ′2(x))dx ds.

If we work with complex numbers calling ϕ := ϕ1 + iϕ2, we get

η1(t) + iη2(t) =
1

2
eip t

∫ t

0

∫ L

0

e−ipsα2(s, x)ϕ′(x)dx ds.

Now, let us assume that (73) fails to be true, i.e., let us suppose that

∀u ∈ L2(0, T ), η1(T ) = η2(T ) = 0 or α(T, ·) 6= 0. (75)

If we define

Uad :=
{
u ∈ L2(0, T ) ; the solution α of (69) satisfies α(T, ·) = 0

}
,

then condition (75) implies that

∀u ∈ Uad,
∫ T

0

∫ L

0

e−ipsα2(s, x)ϕ′(x)dx ds = 0. (76)

Let α1 = α1(t, x) and α2 = α2(t, x) be two solutions of (69) such that

α1(T, ·) = α2(T, ·) = 0.
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Now, for (ρ1, ρ2) ∈ R2, let α := ρ1α1 + ρ2α2 and u := αx(·, L). By linearity, we see
that α = α(t, x) is a solution of (69) and u ∈ Uad. Consequently, (76) implies that,
for every (ρ1, ρ2) ∈ R2,

ρ21

∫ T

0

∫ L

0

e−ipsα2
1(s, x)ϕ′(x)dx ds+ 2ρ1ρ2

∫ T

0

∫ L

0

e−ipsα1(s, x)α2(s)ϕ′(x)dx ds

+ ρ22

∫ T

0

∫ L

0

e−ipsα2
2(s, x)ϕ′(x)dx ds = 0.

Looking at the coefficient of ρ1ρ2, we get∫ T

0

∫ L

0

e−ipsα1(s, x)α2(s, x)ϕ′(x)dx ds = 0. (77)

Let t1, t2 be such that 0 < t1 < t2 < T . We choose the trajectories α1 = α1(t, x)
and α2 = α2(t, x) such that

α2 is not identically equal to 0, (78)

α2(t, x)|([0,t1]∪[t2,T ])×[0,L] = 0 and α1(t, x)|[t1,t2]×[0,L] = Re(eλtyλ(x)), (79)

where λ ∈ C\{±ip} and yλ = yλ(x) is a complex-valued function which satisfies{
λyλ + y′λ + y′′′λ = 0,
yλ(0) = yλ(L) = 0.

(80)

If λ 6= ±ip, one can see that Re(yλ), Im(yλ) ∈ H and then by Theorem 3.3 there
exists such a trajectory α1 = α1(t, x).

Let us introduce the operator Ãw = −w′ − w′′′ on the domain D(Ã) ⊂ L2(0, L)
defined by

D(Ã) :=
{
w ∈ H3(0, L); w(0) = w(L) = 0, w′(0) = w′(L)

}
.

It is not difficult to see that iÃ is a self-adjoint operator on L2(0, L) with compact

resolvent. Hence, the spectrum σ(Ã) of Ã consists only of eigenvalues. Furthermore,
the spectrum is a discrete subset of iR.

If we take λ such that (−ip+λ) /∈ σ(Ã), the operator (Ã−(−ip+λ)I) is invertible,
and thus, there exists a unique complex-valued function φλ = φλ(x) solution of (−ip+ λ)φλ + φ′λ + φ′′′λ = yλϕ

′,
φλ(0) = φλ(L) = 0,
φ′λ(0) = φ′λ(L).

(81)

We multiply (81) by α2(t, x)e(−ip+λ)t, integrate on [0, L] and use integrations by
parts together with (69), boundary and initial conditions in (81) to get

e−ip t
∫ L

0

eλtyλα2(t, x)ϕ′(x)dx =

d

dt

(∫ L

0

e(−ip+λ)tφλ(x)α2(t, x)dx

)
− e(−ip+λ)tφ′λ(L)α2x(t, x)

∣∣∣L
x=0

.
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Then, let us integrate this equality on [0, T ] and use the fact that α2(0, ·) = 0 and
α2(T, ·) = 0. We obtain∫ T

0

∫ L

0

e−ip teλtyλα2(t, x)ϕ′(x)dx dt =

− φ′λ(L)

∫ T

0

e(−ip+λ)t (α2x(t, L)− α2x(t, 0)) dt. (82)

On the other hand, by (77) and (79), it follows that∫ T

0

∫ L

0

e−ip tRe(eλtyλ)α2(t, x)ϕ′(x)dx dt = 0, (83)

and, since one can also take a trajectory α̃1 = α̃1(t, x) such that

α̃1(t, x)|[t1,t2]×[0,L] = Im(eλtyλ(x)),

one deduces from (77) that∫ T

0

∫ L

0

e−ip tIm(eλtyλ)α2(t, x)ϕ′(x)dx dt = 0. (84)

Therefore, from (83) and (84), one gets∫ T

0

∫ L

0

e−ip teλtyλα2(t, x)ϕ′(x)dx dt = 0

and consequently from (82), for every λ 6= ±ip such that (−ip+λ) /∈ σ(Ã), one has

φ′λ(L)

∫ T

0

e(−ip+λ)t (α2x(t, L)− α2x(t, 0)) dt = 0. (85)

Let a ∈ R\[−1/
√

3, 1/
√

3]. We take λ = 2ai(4a2 − 1). Let

yλ(x) = Ce(−
√
3a2−1−ai)x + (1− C)e(

√
3a2−1−ai)x − e2aix, (86)

where

C =
e2aiL − e(

√
3a2−1−ai)L

e(−
√
3a2−1−ai)L − e(

√
3a2−1−ai)L

.

One easily checks that such a yλ = yλ(x) satisfies (80) and yλ 6= 0. Let us define

Σ :=
{
a ∈ R\[−1/

√
3, 1/
√

3] ; λ /∈ σ(Ã), (λ− ip) /∈ σ(Ã)
}
,

where λ = 2ai(4a2− 1). Then the function S : Σ→ C, S(a) = φ′λ(L) is continuous.
Now we use the fact that S is not identically equal to the function 0 (the proof of
this statement will be given in Appendix A). Then, there exist â ∈ Σ and ε > 0
such that for every a ∈ Σ with |a− â| < ε, S(a) 6= 0. From (85) one gets

∀ a ∈ Σ, |a− â| < ε,

∫ T

0

e(−p+2a(4a2−1))i t (α2x(t, L)− α2x(t, 0)) dt = 0

and since the function β ∈ C 7→
∫ T
0
eβt (α2x(t, L)− α2x(t, 0)) dt ∈ C is holomorphic,

it follows that

∀β ∈ C,
∫ T

0

eβt
(
α2x(t, L)− α2x(t, 0)

)
dt = 0,
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which implies that α2x(t, 0) − α2x(t, L) = 0 for every t. In summary, one has that
α2 = α2(t, x) satisfies 

α2t + α2x + α2xxx = 0,
α2(t, 0) = α2(t, L) = 0,
α2x(t, 0) = α2x(t, L),
α2(0, ·) = 0,
α2(T, ·) = 0.

(87)

If we multiply (87) by α2, integrate on [0, L] and use integration by parts together
with the boundary conditions, we obtain that

d

dt

∫ L

0

|α2(t, x)|2dx = 0,

which, together with α2(0, ·) = 0, implies that

α2(t, x) = 0 ∀x ∈ [0, L], ∀ t ∈ [0, T ]. (88)

But this is in contradiction with (78). Thus, we have proved (73) and therefore
Proposition 12.

From now on, for each Tc > 0, we denote by (uc, vc) ∈ L2(0, T )2 the controls
given by Proposition 12 and by (αc, βc) the corresponding trajectories. Let us
define ϕ̃1 := βc(Tc, ·). Let us notice that by scaling the controls, we can assume
that ‖ϕ̃1‖L2(0,L) = 1. We will prove now that in any time T > π/p, we can reach
all the states lying in M .

Proposition 13. Let T > π/p. Let ψ ∈ M . There exists (u, v) ∈ L2(0, T )2 such
that if α = α(t, x) and β = β(t, x) are the solutions of (69) and (70), then

α(T, ·) = 0 and β(T, ·) = ψ.

Proof. Let T̂ > 0 be such that T = (π/p) + T̂ . Let Tc be such that 0 < Tc < T̂ . Let
Ta := T − Tc. If we take in (69) and (70) the controls

(u1, v1)(t) =

{
(0, 0) if t ∈ (0, Ta),

(uc(t− Ta), vc(t− Ta)) if t ∈ (Ta, T ),

we obtain that β1(T, ·) = ϕ̃1, where β1 = β1(t, x) is the corresponding solution of
(70). Now, we use the rotation showed in (58) and (59) in order to reach other
states lying in M . Let us define ϕ̃2 := β2(T, ·), where β2 = β2(t, x) is defined by
the controls

(u2, v2)(t) =


(0, 0) if t ∈ (0, Ta − π

2p ),

(uc(t− Ta + π
2p ), vc(t− Ta + π

2p )) if t ∈ (Ta − π
2p , T −

π
2p ),

(0, 0) if t ∈ (T − π
2p , T ).

In a similar way, the controls

(u3, v3)(t) =


(0, 0) if t ∈ (0, Ta − π

p ),

(uc(t− Ta + π
p ), vc(t− Ta + π

p )) if t ∈ (Ta − π
p , T −

π
p ),

(0, 0) if t ∈ (T − π
p , T ),

allow us to define ϕ̃3 := β3(T, ·). Notice that ϕ̃3 = −ϕ̃1.
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Let Tθ be such that 0 < Tθ < min{π/(2p), T̂ − Tc} and let Tb := (π/p) + Tθ. Let
us define ϕ̃4 := β4(T, ·), where β4 = β4(t, x) is the solution of (70) with

(u4, v4)(t) =

 (0, 0) if t ∈ (0, Ta − Tb),
(uc(t− Ta + Tb), vc(t− Ta + Tb)) if t ∈ (Ta − Tb, T − Tb),

(0, 0) if t ∈ (T − Tb, T ).

We have thus proved that we can reach the missed directions {ϕ̃k}4k=1. Let us
now define the cones

M1 := {d1ϕ̃1 + d2ϕ̃2; d1 > 0, d2 ≥ 0},
M2 := {d1ϕ̃2 + d2ϕ̃3; d1 > 0, d2 ≥ 0},
M3 := {d1ϕ̃3 + d2ϕ̃4; d1 > 0, d2 ≥ 0},
M4 := {d1ϕ̃4 + d2ϕ̃1; d1 > 0, d2 ≥ 0}.

By construction of these cones, one has that M =

4⋃
k=1

Mk.

Remark 10. It is easy to see that if one chooses Tc, Tθ such that Tc < Tθ, then
the supports of the trajectories αk = αk(t, x) for k = 1, . . . , 4 are disjoint.

For each w = (w1, w2) ∈ R2, let us define

ρw :=
√
w2

1 + w2
2 and zw := (w1ϕ1 + w2ϕ2)/ρw ∈M.

We have that zw ∈ Mi for some i ∈ {1, . . . , 4} and hence there exist d1w > 0 and
d2w ≥ 0 such that zw = d1wϕ̃i + d2wϕ̃i+1. If we take the control

(uw, vw) = (d
1/2
1w u

i + d
1/2
2w u

i+1, d1wv
i + d2wv

i+1)

and use the fact that the trajectories αk for k = 1, . . . , 4 are disjoints, then we see
that the corresponding solution βw = βw(t, x) of (70) satisfies βw(T, ·) = zw.

Finally, let ψ ∈M . With R := ‖ψ‖L2(0,L) we can write ψ = Rzw for a (w1, w2) ∈
R2 such that w2

1 +w2
2 = 1. It is easy to see that the control (u, v) = (R1/2uw, Rvw)

allows us to reach the state ψ and so the proof of this proposition is ended.

Remark 11. The proof of Proposition 13 is the only part which needs a time large
enough. Hence, Theorem 1.5 holds for TL := π/p.

Let us denote, for D > 0 and R > 0,

BDR :=
{
ξ ∈ L2(0, D) ; ‖ξ‖L2(0,D) ≤ R

}
,

and recall that for each w = (w1, w2) ∈ R2, we write

ρw :=
√
w2

1 + w2
2, and zw := (w1ϕ1 + w2ϕ2)/ρw.

We also write (uw, vw) ∈ L2(0, T ) the controls defined in Proposition 13 in order to
drive the solutions βw = βw(t, x) from zero at t = 0 to zw at t = T .

From the work done for the linear system, we know that for each y0 ∈ L2(0, L)
there exists a continuous linear affine map (it is a consequence of applying the HUM
method [31] to prove Theorem 3.3)

Γ0 : Ψ ∈ H ⊂ L2(0, L) 7−→ Γ0(Ψ) ∈ L2(0, T ),
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such that the solution of 
yt + yx + yxxx = 0,
y(t, 0) = y(t, L) = 0,
yx(t, L) = Γ0(Ψ),
y(0, ·) = PH(y0),

satisfies y(T, ·) = Ψ. Moreover, there exist constants D1, D2 > 0 such that

∀y0 ∈ L2(0, L), ∀Ψ ∈ H ‖Γ0(Ψ)‖L2(0,T ) ≤ D1(‖Ψ‖L2(0,L) + ‖y0‖L2(0,L)), (89)

∀y0 ∈ L2(0, L), ∀Ψ1,Ψ2 ∈ H ‖Γ0(Ψ1)− Γ0(Ψ2)‖L2(0,T ) ≤
D2‖Ψ1 −Ψ2‖L2(0,L). (90)

Let y0 ∈ L2(0, L) be such that ‖y0‖L2(0,L) < r, r > 0 to be chosen later. Let us
define the functions G and F

G : L2(0, L) −→ L2(0, T ),

z = PH(z) + w1ϕ1 + w2ϕ2 7→ G(z) = Γ0(PH(z)) + ρ
1/2
w uw + ρwvw,

F : BTε1 ∩ L
2(0, T ) −→ L2(0, L),

h 7−→ F (h) = y(T, ·),
where y = y(t, x) is the solution of

yt + yx + yxxx + yyx = 0,
y(t, 0) = y(t, L) = 0,
yx(t, L) = h(t),
y(0, ·) = y0,

(91)

and ε1 is small enough so that the function F is well defined. It holds if ε1 + r < ε
where ε is given by Proposition 5. The map F is even continuous according to
Proposition 6. Let yT ∈ L2(0, L) be such that ‖yT ‖ < r. Let Λy0,yT denote the
map

Λy0,yT : BLε2 ∩ L
2(0, L) −→ L2(0, L),

z 7−→ Λy0,yT (z) = z + yT − F ◦G(z),

where ε2 is small enough so that Λy0,yT is well defined (ε2 exists according to
Proposition 5 and to the continuity of G).

Let us notice that if we find a fixed point z̃ ∈ L2(0, L) of the map Λy0,yT , then
we will have F ◦ G(z̃) = yT and this means that the control h := G(z̃) ∈ L2(0, T )
drives the solution of (91) from y0 at t = 0 to yT at t = T .

Let us assert the following technical result which will be needed to study the
map Λy0,yT .

Lemma 3.5. There exist ε3 > 0 and C3 > 0 such that, for every z, y0 ∈ BLε3 , the
following estimate holds.

‖z − F (G(z))‖L2(0,L) ≤ C3(‖y0‖L2(0,L) + ‖z‖3/2L2(0,L)).

Proof. Let z, y0 ∈ L2(0, L). Let w = (w1, w2) ∈ R2 be such that z = PH(z) +ρwzw.
Let y = y(t, x) be a solution of

yt + yx + yxxx + yyx = 0,
y(t, 0) = y(t, L) = 0,
yx(t, L) = G(z),
y(0, ·) = y0.

(92)
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From (89) and since ρw ≤ ‖z‖L2(0,L), one deduces that if ‖z‖L2(0,L) is small
enough, then there exists a constant D3 such that

‖G(z)‖L2(0,T ) ≤ D3(‖y0‖L2(0,L) + ‖z‖1/2L2(0,L)). (93)

By using (25) and (93), one can find ε2, C2 > 0 such that for every z, y0 ∈ BLε2 the
unique solution of (92) satisfies

‖y‖B ≤ C2(‖y0‖L2(0,L) + ‖z‖1/2L2(0,L)). (94)

Let ỹ = ỹ(t, x), αw = αw(t, x), βw = βw(t, x) and β0 = β0(t, x) be the solutions
of 

ỹt + ỹx + ỹxxx = 0,
ỹ(t, 0) = ỹ(t, L) = 0,
ỹx(t, L) = Γ0(PH(z)),
ỹ(0, ·) = PH(y0),
αwt + αwx + αwxxx = 0,
αw(t, 0) = αw(t, L) = 0,
αwx(t, L) = uw(t),
αw(0, ·) = 0,

βwt + βwx + βwxxx = −αwαwx,
βw(t, 0) = βw(t, L) = 0,
βwx(t, L) = vw(t),
βw(0, ·) = 0,

β0
t + β0

x + β0
xxx = 0,

β0(t, 0) = β0(t, L) = 0,
β0
x(t, L) = 0,
β0(0, ·) = PM (y0).

Let us define

φ := y − ỹ − ρ1/2w αw − ρwβw − β0.

We have that φ = φ(t, x) satisfies
φt + φx + φxxx + φφx = −(φa)x − b,
φ(t, 0) = φ(t, L) = 0,
φx(t, L) = 0,
φ(0) = 0,

where a := ỹ + ρ
1/2
w αw + ρwβw + β0,

b := ỹỹx + (ỹ(ρ
1/2
w αw + ρwβw + β0))x + ρ

3/2
w (αwβw)x

+ρ2wβwβwx + ρ
1/2
w (αwβ

0)x + ρw(βwβ
0)x + β0β0

x.

It is easy to see that there exists C4 > 0 such that for every z, y0 ∈ BLε2
‖φ‖B ≤ C4(‖y0‖L2(0,L) + ‖z‖1/2L2(0,L)), (95)

‖a‖B ≤ C4(‖y0‖L2(0,L) + ‖z‖1/2L2(0,L)), (96)

‖b‖L1(0,T,L2(0,L)) ≤ C4(‖y0‖L2(0,L) + ‖z‖3/2L2(0,L)). (97)
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One can also prove that there exists C5 > 0 such that for every f, g ∈ B
‖(fg)x‖L1(0,T,L2(0,L)) ≤ C5‖f‖B‖g‖B. (98)

By Proposition 6, (97) and (98), there exists C6 > 0 such that

‖φ‖2B ≤ C6(‖φ‖2B‖a‖2B + ‖y0‖2L2(0,L) + ‖z‖3L2(0,L)),

which, together with (95) and (96), implies the existence of ε3 and C7 such that for
every z, y0 ∈ BLε3

‖φ‖B ≤ C7(‖y0‖L2(0,L) + ‖z‖3/2L2(0,L)). (99)

Finally, from (99) one obtains with C3 := C7 + 1

‖z − F ◦G(z)‖L2(0,L) ≤ ‖z − F ◦G(z)− β0(T )‖L2(0,L) + ‖β0(T )‖L2(0,L)

= ‖φ(T )‖L2(0,L) + ‖β0(T )‖L2(0,L)

≤ C7(‖y0‖L2(0,L) + ‖z‖3/2L2(0,L)) + ‖y0‖L2(0,L)

≤ C3(‖y0‖L2(0,L) + ‖z‖3/2L2(0,L)),

which ends the proof of Lemma 3.5.

For w = (w1, w2) ∈ R2 fixed, let us study the map Π := PH ◦ Λy0,yT (· + ρwzw)
on the subspace H (recall that ρwzw = w1ϕ1 + w2ϕ2).

Π : H −→ H,
Ψ 7−→ Π(Ψ) = Ψ + PH(yT )− PH(F ◦G(Ψ + ρwzw)).

In order to prove the existence of a fixed point of the map Π, we will apply the
Banach fixed point theorem to the restriction of Π to the closed ball BLR ∩H with
R > 0 small enough. By using Lemma 3.5 we see that

‖Π(Ψ)‖L2(0,L) ≤ ‖yT ‖L2(0,L) + ‖Ψ + ρwzw − F ◦G(Ψ + ρwzw)‖L2(0,L)

≤ ‖yT ‖L2(0,L) + C3(‖y0‖L2(0,L) + ‖Ψ + ρwzw‖3/2L2(0,L))

≤ C ′3(‖y0‖L2(0,L) + ‖yT ‖L2(0,L) + ρ
3/2
w ) + C3‖Ψ‖3/2L2(0,L)

≤ C ′3(2r + ρ
3/2
w ) + C3‖Ψ‖3/2L2(0,L),

where C ′3 := C3 + 1. Hence, if we choose R such that R3/2 ≤ R
2C3

and r, ρw such
that

C ′3(2r + ρ3/2w ) ≤ R

2
,

then it follows that

‖Π(Ψ)‖L2(0,L) ≤ R and so Π(BLR ∩H) ⊂ (BLR ∩H).

It remains to prove that the map Π is a contraction. Let Ψ1,Ψ2 ∈ BLR ∩H. Let
y = y(t, x), q = q(t, x), ỹ = ỹ(t, x) and q̃ = q̃(t, x) be the solutions of the following
problems 

yt + yx + yxxx + yyx = 0,
y(t, 0) = y(t, L) = 0,
yx(t, L) = G(Ψ1 + ρwzw),
y(0, ·) = y0,
qt + qx + qxxx + qqx = 0,
q(t, 0) = q(t, L) = 0,
qx(t, L) = G(Ψ2 + ρwzw),
q(0, ·) = y0,
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ỹt + ỹx + ỹxxx = 0,
ỹ(t, 0) = ỹ(t, L) = 0,
ỹx(t, L) = Γ0(Ψ1),
ỹ(0, ·) = PH(y0),
q̃t + q̃x + q̃xxx = 0,
q̃(t, 0) = q̃(t, L) = 0,
q̃x(t, L) = Γ0(Ψ2),
q̃(0, ·) = PH(y0).

Let us define φ := y − ỹ, ψ := q − q̃ and γ := φ− ψ. One sees that γ satisfies
γt + γx + γxxx + γγx = −(γa)x − b,
γ(t, 0) = γ(t, L) = 0,
γx(t, L) = 0,
γ(0) = 0,

(100)

where
a := ỹ + ψ and b := (q(ỹ − q̃))x + (ỹ − q̃)(ỹ − q̃)x.

It is easy to see that there exists a constant C8 > 0 such that

‖b‖L1(0,T,L2(0,L)) ≤ C8 (‖q‖B + ‖ỹ‖B + ‖q̃‖B) ‖ỹ − q̃‖B, (101)

‖(aγ)x‖L1(0,T,L2(0,L)) ≤ C8 (‖q‖B + ‖ỹ‖B + ‖q̃‖B) ‖γ‖B. (102)

By using Proposition 6, (101) and (102) we get the existence of C9 > 0 such that

‖γ‖2B ≤ C9(‖q‖B + ‖ỹ‖B + ‖q̃‖B)2(‖ỹ − q̃‖2B + ‖γ‖2B). (103)

In addition, since w := ỹ − q̃ satisfies the following linear equation
wt + wx + wxxx = 0,
w(t, 0) = w(t, L) = 0,
wx(t, L) = Γ0(Ψ1)− Γ0(Ψ2),
w(0, ·) = 0,

there exists C10 > 0 such that

‖ỹ − q̃‖B ≤ C10‖Γ0(Ψ1)− Γ0(Ψ2)‖L2(0,T )

and so, from (90), one gets

‖ỹ − q̃‖B ≤ C10D2‖Ψ1 −Ψ2‖L2(0,L). (104)

Moreover, it is easy to see that there exists a constant C11 > 0 such that

‖q‖B + ‖q̃‖B + ‖ỹ‖B ≤ C11(‖y0‖L2(0,L) + ‖Ψ1‖L2(0,L) + ‖Ψ2‖L2(0,L) + ρ1/2w ). (105)

Thus, using (103), (104) and (105) we see that if R, ρw, r are small enough, it follows
that

‖γ‖B ≤
1

2
‖Ψ1 −Ψ2‖L2(0,L).

Therefore, we have

‖Π(Ψ1)−Π(Ψ2)‖L2(0,L) ≤
‖Ψ1 − F ◦G(Ψ1 + ρwzw)−Ψ2 + F ◦G(Ψ2 + ρwzw)‖L2(0,L)

= ‖γ(T )‖L2(0,L) ≤ ‖γ‖B ≤
1

2
‖Ψ1 −Ψ2‖L2(0,L),

which implies the existence of a unique fixed point Ψ(y0, yT , w1, w2) ∈ BLR ∩H of
the map Π|BLR∩H . Moreover, follows the more precise proposition.
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Proposition 14. There exist R0 > 0, D > 1, such that for every 0 < R < R0,
for every y0, yT ∈ BLR/D, (w1, w2) ∈ R2 with ρw < R/D, there exists a unique

Ψ(y0, yT , w1, w2) ∈ BLR ∩H fixed point of the map Π|BLR∩H .

We now apply the Brouwer fixed point theorem to the restriction of the map

τ : M −→ M,
w1ϕ1 + w2ϕ2 7→ PM (ρwzw + yT − F ◦G(ρwzw + Ψ(y0, yT , w1, w2))),

to the closed ball BL
R̂
∩M with R̂ small enough. Using Lemma 3.5, the continu-

ity (in a neighborhood of 0 ∈ (L2(0, L))2 × R2) of the map (y0, yT , w1, w2) 7−→
Ψ(y0, yT , w1, w2) and choosing r small enough, we get the existence of a radius

R̂ > 0 such that τ(BL
R̂
∩M) ⊂ BL

R̂
∩M . This inclusion and the continuity of the

map τ allow us to apply the Brouwer fixed point theorem. Therefore, there exists
(w̃1, w̃2) ∈ R2 with w̃2

1 + w̃2
2 ≤ R̂2 such that Ψ̃ := Ψ(y0, yT , w̃1, w̃2) satisfies

PM (yT − F ◦G(Ψ̃ + w̃1ϕ1 + w̃2ϕ2)) = 0. (106)

Using the fact that

Π(Ψ̃) = PH(Ψ̃ + yT − F ◦G(Ψ̃ + w̃1ϕ1 + w̃2ϕ2)) = Ψ̃,

we obtain
PH(yT − F ◦G(Ψ̃ + w̃1ϕ1 + w̃2ϕ2)) = 0,

which together with (106), implies that

yT = F ◦G(Ψ̃ + w̃1ϕ1 + w̃2ϕ2),

which ends the proof of Theorem 1.5 when M is two-dimensional.

3.3.2. M is one-dimensional. This case, which was in fact the first critical case
solved (see [18]) requires a higher-order expansion. Indeed, it was proven in [18,
Appendix B] that a second-order approximation is not good enough to get into the
set M :=< 1 − cos(x) >. Let us give an idea of the proof of Theorem 1.5 in this
case. We perform a third-order expansion y ≈ εα + ε2β + ε3γ, with α solution of
(69), β solution of (70) and γ solution of

γt + γx + γxxx = −(αβ)x,
γ(t, 0) = γ(t, L) = 0,
γx(t, L) = w(t),
γ(0, ·) = 0.

(107)

One first proves the following.

Proposition 15. ([18]) Let T > 0. There exists (u, v, w) ∈ L2(0, T )3 such that if
α, β, γ are the solutions of (69), (70) and (107), respectively, then

α(T, ·) = 0, β(T, ·) = 0 and γ(T, ·) ∈M\{0}.

Proof. It is done by contradiction in a similar way to the proof of Proposition 12.

Using this proposition we get γ such that γ(T, ·) = µ(1− cos(x)) for some µ ∈ R.
If (u, v, w) are the corresponding controls, then the new controls

ũ = λu, ṽ = λ2v, w̃ = λ3w

are such that the new trajectories are α̃ = λα, β̃ = λ2β and γ̃ = λ3γ. Thus,

α̃(T, ·) = 0, β̃(T, ·) = 0 and γ̃(T, ·) = µλ3(1− cos(x)).
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By choosing λ ∈ R in an appropriate way we can reach with γ̃ any state lying in
M .

Once this is known, we can proceed as in the two-dimensional case and use a
fixed point argument to get Theorem 1.5. This argument is explained again in next
section in the general case.

Let us notice that in this case there is no condition on the control time T .

3.3.3. General case. Here and in the sequel, we denote by L a critical length such
that dimM > 2 and by PA the orthogonal projection on a subspace A in L2(0, L).

The first point is that for any j ∈ J>, we can enter into the two-dimensional
subspace Mj . The strategy is the same as in previous cases. We consider a power
series expansion of (y, h) with the same scaling on the state y and on the control h.
One has the following result that can be proved in the same way as before.

Proposition 16. Let T > 0. For every i = 1, . . . , n>, there exists (ui, vi) ∈
L2(0, T )2 such that if αi = αi(t, x) and βi = βi(t, x) are the solutions of

αit + αix + αixxx = 0,
αi(t, 0) = αi(t, L) = 0,
αix(t, L) = ui(t),
αi(0, .) = 0,

(108)

and 
βit + βix + βixxx = −αiαix,
βi(t, 0) = βi(t, L) = 0,
βix(t, L) = vi(t),
βi(0, .) = 0,

(109)

then

αi(T, .) = 0, PH(βi(T, .)) = 0 and PMi(βi(T, .)) 6= 0.

Let us denote, for j = 1, . . . , n>,

φji := PMj (βi(T, .)).

From Proposition 16, φii 6= 0. Consequently, using scaling on the controls, we can
assume that ‖φii‖L2(0,L) = 1. Notice that the previous proposition says nothing

about φji for j 6= i.
Now, we shall prove that we can reach all the states lying in the subspace

M> :=
⊕
i∈J>

Mi,

in any time T > T>, where

T> := π

n>∑
i=1

(n> + 1− i) 1

pi
.

In order to do that, we will strongly use the fact that if there is no control (i.e.,
h = 0) and if the initial condition lies in Mj for j ∈ J> (i.e., y0 ∈ Mj), then the
solution y of the linear KdV equation only turns in the two-dimensional subspace
Mj with an angular velocity equal to pj (defined in (47)) and conserves its L2-norm.
More precisely, we have the following result.
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Lemma 3.6. Let j ∈ J>. Let y0 ∈Mj. Let λ ≥ 0 and δ ∈ [0, 2π) be such that

y0 = λ cos(δ)ϕj1 + λ sin(δ)ϕj2. (110)

Then the solution of  yt + yx + yxxx = 0,
y(t, 0) = y(t, L) = yx(t, L) = 0,
y(0, ·) = y0

(111)

is given by

y(t, x) = λ cos(pjt+ δ)ϕj1 + λ sin(pjt+ δ)ϕj2. (112)

For the sake of brevity we introduce, for j ∈ J>, θ ∈ R and y0 ∈ Mj reading as
(110), the notation

Rj(y0, θ) := λ cos(θ + δ)ϕj1 + λ sin(θ + δ)ϕj2, (113)

i.e., Rj(·, θ) represents a rotation of an angle θ in the subspace Mj . Thus, the
solution of (111) can be written as

y(t, x) = Rj(y0, pjt).

Proposition 17. Let T > T>. Let ψ ∈ M>. There exists (uψ, vψ) ∈ L2(0, T )2

such that if αψ = αψ(t, x) and βψ = βψ(t, x) are the solutions of (108) and (109),
then

αψ(T, .) = 0, βψ(T, .) = ψ.

Proof. First at all, let us notice that if L = 2kπ for some k ∈ N∗, then Mn =
〈1 − cosx〉 and a priori PMn

(βψ(T, ·)) may be non-null. However, we know from
[18, Corollary 19] that a second order expansion is not sufficient to enter into the
subspace Mn and therefore PMn

βψ(T.·) = 0. That is the reason for which we do
not care about the projection on Mn of second-order trajectories.

The case n> = 1 has already been studied. Let us consider the case n> = 2,
i.e., where we have 2 subspaces, M1 and M2 associated to (k1, l1) and (k2, l2) with

p1 > p2 > 0 (for instance, L = 2π
√

91 leads to the couples (k1, l1) = (16, 1) and
(k2, l2) = (11, 8)).

Let T >
2π

p1
+
π

p2
. Let T1 be such that

T1 >
π

p1
and T − T1 >

π

p1
+
π

p2
.

Let Tθ > 0 and Tc > 0 be such that

Tc < Tθ, Tc <
π

p1
,

Tc + Tθ < min

(
T − T1 −

π

p1
− π

p2
,
π

p2
− π

p1
, T1 −

π

p1

)
.

Thanks to Proposition 16, there exist two pairs of controls, (u1, v1) and (u2, v2) in
L2(0, Tc) such that the respective solutions of (108) and (109), (α1, β1) and (α2, β2),
satisfy

PM1
(β1(Tc, ·)) 6= 0, and PM2

(β2(Tc, ·)) 6= 0.

With the notations introduced before,{
(φ11, φ

2
1) = (PM1

(β1(T, ·)), PM2
(β1(T, ·))),

(φ12, φ
2
2) = (PM1

(β2(T, ·)), PM2
(β2(T, ·))).
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We now use the rotation phenomena explained before and Proposition 16 to reach
a basis for the missed directions lying in M>. For the sake of clarity in our control
strategy, we define for a time t1,the following control in L2(0, T ).

(Ut1 , Vt1)(t) :=

 (0, 0) if t ∈ (0, t1),
(u1(t− t1), v1(t− t1)) if t ∈ (t1, t1 + Tc),
(0, 0) if t ∈ (t1 + Tc, T ).

This control becomes active at time t = t1, between t = t1 and t = t2, it drives the
system to enter into the space M1 and after t = t2, it becomes inactive, producing
a rotation in M1.

Now, we define the controls

(u11, v
1
1) := (Ut1 , Vt1) with t1 = T − Tc,

(u21, v
2
1) := (Ut1 , Vt1) with t1 = T − Tc − π

2p1
,

(u31, v
3
1) := (Ut1 , Vt1) with t1 = T − Tc − π

p1
,

(u41, v
4
1) := (Ut1 , Vt1) with t1 = T − Tc − π

p1
− Tθ.

Let αj1, β
j
1 ∈ B be the solutions of (108) and (109) with controls uj1 and vj1 for

j = 1, . . . , 4 and let us denote

ψj1 := PM1
βj1(T, ·) and ψ̃j2 := PM2

βj1(T, ·).

It is easy to see that

ψ1
1 = φ11, ψ̃1

2 = φ21,

ψ2
1 = R1(φ11,

π
2 ), ψ̃2

2 = R2(φ21,
p2π
2p1

),

ψ3
1 = R1(φ11, π) = −φ11, ψ̃3

2 = R2(φ21,
p2π
p1

),

ψ4
1 = R1(−φ11, p1Tθ), ψ̃4

2 = R2(φ21, p2(Tθ + π
p1

)).

Thus, we have constructed some controls allowing to reach the missed states

ψ1
1 + ψ̃1

2 , ψ2
1 + ψ̃2

2 , ψ3
1 + ψ̃3

2 , and ψ4
1 + ψ̃4

2 .

Now, we define for a time t2, the following control in L2(0, T )

(U t2 , V t2)(t) =


(0, 0) if t ∈ (0, t2),
(u1(t− t2), v1(t− t2)) if t ∈ (t2, t2 + Tc),
(0, 0) if t ∈ (t2 + Tc, t2 + π

p1
),

(u1(t− t2 − π
p1

), v1(t− t2 − π
p1

)) if t ∈ (t2 + π
p1
, t2 + π

p1
+ Tc),

(0, 0) if t ∈ (t2 + π
p1

+ Tc, T ),

which is the superposition of two controls of type (Ut1 , Vt1)

(U t2 , V t2)(t) = (Ut2+ π
p1
, Vt2+ π

p1
) + (Ut2 , Vt2).

This fact means that the solution corresponding to the controls (U t2 , V t2) is the
addition of two trajectories which enter into M and then turn during different times.

We define the following controls in L2(0, T ).

(u11, v
1
1) = (U t2 , V t2) with t2 = T − T1 − π

p1
− Tc,

(u12, v
1
2) = (U t2 , V t2) with t2 = T − T1 − π

p1
− Tc − Tθ,

(u13, v
1
3) = (U t2 , V t2) with t2 = T − T1 − π

p1
− π

p2
− Tc,

(u14, v
1
4) = (U t2 , V t2) with t2 = T − T1 − π

p1
− π

p2
− Tc − Tθ.
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Let αj2, β
j
2 ∈ B be the solutions of (108) and (109) with controls uj2 and vj2 for

j = 1, . . . , 4 and let us denote

ψj2 := PM2
βj2(T, ·)

Here, it is very important to note that, by construction and since p1 > p2, one has

PM1β
1
2(T, ·) = 0 and ψ1

2 = R2(φ21, p2T1) +R2(φ21, p2(T1 + π/p1)) 6= 0

Thus, we have constructed some controls allowing to reach the following missed
states

ψ1
2 , ψ2

2 , ψ3
2 , and ψ4

2 ,

where
ψ2
2 = R2(ψ1

2 , p2Tθ),
ψ3
2 = R2(ψ1

2 , π) = −ψ1
2 ,

ψ4
2 = R2(−ψ2

2 , p2Tθ).

Furthermore, we have for k = 1, 2

Mk =

4⋃
j=1

M j
k (114)

where

M1
k := {d1kψ1

k + d2kψ
2
k; d1k > 0, d2k ≥ 0},

M2
k := {d1kψ2

k + d2kψ
3
k; d1k > 0, d2k ≥ 0},

M3
k := {d1kψ3

k + d2kψ
4
k; d1k > 0, d2k ≥ 0},

M4
k := {d1kψ4

k + d2kψ
1
k; d1k > 0, d2k ≥ 0}.

Let ψ ∈ M>. From (114), we know that PM1
(ψ) ∈ M i

1 for some i ∈ {1, . . . , 4}.
Hence, there exist d11 > 0, d21 ≥ 0, such that

ψ = d11ψ
i
1 + d21ψ

i+1
1 + PM2(ψ).

Let us write ψ as follows

ψ = d11ψ
i
1 + d21ψ

i+1
1 + d11ψ̃

i
2 + d21ψ̃

i+1
2 +

(
PM2(ψ)− d11ψ̃i2 − d21ψ̃i+1

2

)
.

Since the states ψ̃i2, ψ̃
i+1
2 lie in M2, there exists j ∈ {1, . . . , 4} such that

PM2(ψ)− d11ψ̃i2 − d21ψ̃i+1
2 ∈M j

2

and therefore there exist d12 > 0, d22 ≥ 0 such that

ψ = d11(ψi1 + ψ̃i2) + d21(ψi+1
1 + ψ̃i+1

2 ) + d12ψ
j
2 + d22ψ

j+1
2 .

Thus, we have decomposed ψ in terms of reachables directions for the second-order
expansion. Now, we take the controls uψ, vψ defined by

uψ =
√
d11u

i
1 +

√
d21u

i+1
1 +

√
d12u

j
2 +

√
d22u

j+1
2 ,

vψ = d11v
i
1 + d21v

i+1
1 + d12v

j
2 + d22v

j+1
2 ,

and αψ, βψ ∈ B the corresponding solutions of (108) and (109), respectively. Here,
it is important to note that, with the choices of T, T1, Tc and Tθ, the supports of
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the trajectories αjk for k = 1, 2 and j = 1, . . . , 4 are disjoint and that all these
trajectories go from 0 at t = 0 to 0 at t = T , i.e.,

αjk(0, ·) = αjk(T, ·) = 0.

Thus, it is not difficult to verify that

αψ(T, ·) = 0 and βψ(T, ·) = ψ

which ends the proof in the case n> = 2. The previous method can be easily
adapted to the case where n> > 2. In order to construct the controls needed in the
general case, our method requires a time of control T greater than T>.

We assume in this section that L = 2kπ for some k ∈ N\{0}. Let us recall that
in this case we have

Mn = 〈1− cosx〉 and n> = n− 1. (115)

The proof of the following result follows Proposition 15. See [18, Proposition 8].

Proposition 18. Let Tc > 0. There exists (u, v, w) in L2(0, Tc)
3 such that, if

α, β, γ are the mild solutions of
αt + αx + αxxx = 0,
α(t, 0) = α(t, L) = 0,
αx(t, L) = u(t),
α(0, .) = 0,

(116)


βt + βx + βxxx = −ααx,
β(t, 0) = β(t, L) = 0,
βx(t, L) = v(t),
β(0, .) = 0,

(117)


γt + γx + γxxx = −(αβ)x,
γ(t, 0) = γ(t, L) = 0,
γx(t, L) = w(t),
γ(0, .) = 0,

(118)

then

α(Tc, .) = 0, β(Tc, .) = 0 and γ(Tc, .) = (1− cosx) +

n>∑
i=1

PMi
(γ(Tc, .)).

The idea to vanish the projections of γ(Tc, ·) on Mi, and thus to reach the
direction (1− cos(x)), is the same as before, that is, to use the rotation phenomena
given in Lemma 3.6. In addition, we use the fact that the function (1 − cosx)
satisfies {

yx + yxxx = 0,
y(0) = y(2kπ) = yx(2kπ) = 0.

The case n = 1 has already been considered. We deal with the case n = 2 (for
example, L = 14π leads to the couples (k1, l1) = (11, 2) and (k2, l2) = (7, 7)).

Let us define the following control lying in L2(0, T )3, where T > π/p1. (Here,
we omit the time translation needed for the controls u, v and w which are defined
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in (0, Tc))

(u+, v+, w+)(t) =


(0, 0, 0) if t ∈ (0, T − Tc − π

p1
),

(u, v, w) if t ∈ (T − Tc − π
p1
, T − π

p1
),

(0, 0, 0) if t ∈ (T − π
p1
, T − Tc),

(u, v, w) if t ∈ (T − Tc, T ).

By defining α+, β+, γ+ ∈ B as the solutions of (116) with control u+, (117) with
control v+ and (118) with control w+ respectively, it is not difficult to see that

α+(T, .) = 0, β+(T, .) = 0, γ+(T, .) = 2(1− cosx). (119)

Now, if we consider the control (u−, v−, w−) := (−u+, v+,−w+) we get

α−(T, .) = 0, β−(T, .) = 0, γ−(T, .) = −2(1− cosx), (120)

where obviously α−, β−, γ− ∈ B are the solutions of (116), (117) and (118) with
controls u−, v− and w− respectively. Thus we can reach all directions in M2 in a

time T >
π

p1
.

We can easily deduce the same result in the case n > 2. We just have to construct
a control that vanishes the components in the other missed subspaces Mj , j ∈ J>.
In order to do that, a time of control T , with

T > Tn := π

n−1∑
i=1

1

pi
, (121)

is sufficient.
Let us apply a fixed point argument in order to prove Theorem 1.5 in the general

case. If L 6= 2kπ, then we can use the same proof as in the two-dimensional case
and get the controllability with TL = T>. Thus the only interesting case we detail
here is when L = 2kπ and dimM > 2. We have to combine second and third order
approximations.

Recall that for L ∈ N , we have n pairs (kj , lj) describing L. We have introduced
some important notations

J> := {j; kj > lj}, n> := |J>|, M> :=

n>⊕
j=1

Mj .

We consider the case where n> = (n−1) and consequently where Mn = 〈1− cosx〉.
Thus we can write any z ∈ L2(0, L) as

z = PH(z) + ρzψz + dz(1− cosx), (122)

where

ρz := ‖PM>(z)‖L2(0,L), ρzψz := PM>(z), and dz(1− cosx) = PMn
(z).

Let us also denote, for D > 0 and R > 0,

BDR :=
{
ξ ∈ L2(0, D) ; ‖ξ‖L2(0,D) ≤ R

}
.

From previous sections we have the existence of the controls u±, v±, w± ∈
L2(0, Tn) and for every ψ ∈ M>, the controls uψ, vψ ∈ L2(0, T>). As we shall
see later, we need that the corresponding trajectories of first order α± and αψ are
disjoint and therefore for every z ∈ L2(0, L) written as (122), and for every T
satisfying

T > TL := Tn + T>,
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we define the following controls lying in L2(0, T )

(ũ, ṽ, w̃)(t) =

 (0, 0, 0) if t ∈ (0, T − TL),
(usign(dz), vsign(dz), wsign(dz))|(t−T+TL) if t ∈ (T − TL, T − T>),
(0, 0, 0) if t ∈ (T − T>, T )

and

(û, v̂)(t) :=

{
(0, 0) if t ∈ (0, T − T>),
(uψz , vψz )|(t−T+T>) if t ∈ (T − T>, T ),

where we use the notation

sign(dz) =

{
+ if dz ≥ 0,
− if dz < 0.

(123)

Let y0 ∈ L2(0, L) be such that ‖y0‖L2(0,L) < r, where r > 0 has to be chosen
later. Using (122), we define the functions G and F by

G : L2(0, L) −→ L2(0, T ),

z 7−→ Γ0(PH(z)) + ρ
1
2
z û+ ρz v̂ + |dz|

1
3 ũ+ |dz|

2
3 ṽ + |dz|w̃,

F : BTε1 ∩ L
2(0, T ) −→ L2(0, L),

h 7−→ F (h) := y(T, ·),

where y = y(t, x) is the solution of
yt + yx + yxxx + yyx = 0,
y(t, 0) = y(t, L) = 0,
yx(t, L) = h(t),
y(0, ·) = y0,

(124)

and ε1 is small enough so that the function F is well defined.
Let yT ∈ L2(0, L) be such that ‖yT ‖ < r. Let Λy0,yT denote the map

Λy0,yT : BLε2 ∩ L
2(0, L) −→ L2(0, L),

z 7−→ Λy0,yT (z) := z + yT − F ◦G(z),

where ε2 is small enough so that Λy0,yT is well defined (see Proposition 5).
Let us remark that if we find a fixed point z̃ ∈ L2(0, L) of the map Λy0,yT , then

we will have

F ◦G(z̃) = yT

which means that the control

h := G(z̃) ∈ L2(0, T )

drives the solution of (124) from y0 at t = 0 to yT at t = T . In the following
sections, we prove that such a fixed point exists.

Let us assert the following technical result which will be needed to study the
map Λy0,yT .

Lemma 3.7. There exist ε3 > 0 and C1 > 0 such that, for every z, y0 ∈ BLε3 , the
following estimate holds

‖z − F ◦G(z)‖L2(0,L) ≤ C1(‖y0‖L2(0,L) + ‖z‖4/3L2(0,L)).
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Proof. Let z, y0 ∈ L2(0, L). Let y = y(t, x) be the solution of (92).
From (89) and the fact that ρz ≤ ‖z‖L2(0,L), one deduces that if ‖z‖L2(0,L) is

smaller than 1 (and therefore ‖z‖L2(0,L) ≤ ‖z‖
1/2
L2(0,L)), then there exists a constant

C2 such that

‖G(z)‖L2(0,T ) ≤ C2(‖y0‖L2(0,L) + ‖z‖1/3L2(0,L)). (125)

Thus, one can find ε4, C3 > 0 such that for every z, y0 ∈ BLε4 , the unique solution
of (92) satisfies

‖y‖B ≤ C3(‖y0‖L2(0,L) + ‖z‖1/3L2(0,L)). (126)

Let ỹ, α̂, β̂, α̃, β̃, γ̃ and ŷ be the solutions of
ỹt + ỹx + ỹxxx = 0,
ỹ(t, 0) = ỹ(t, L) = 0,
ỹx(t, L) = Γ0(PH(z)),
ỹ(0, ·) = PH(y0),

(127)


α̂t + α̂x + α̂xxx = 0,
α̂(t, 0) = α̂(t, L) = 0,
α̂x(t, L) = û(t),
α̂(0, ·) = 0,

(128)


β̂t + β̂x + β̂xxx = −α̂α̂x,
β̂(t, 0) = β̂(t, L) = 0,

β̂x(t, L) = v̂(t),

β̂(0, ·) = 0,

(129)


α̃t + α̃x + α̃xxx = 0,
α̃(t, 0) = α̃(t, L) = 0,
α̃x(t, L) = ũ(t),
α̃(0, ·) = 0,

(130)


β̃t + β̃x + β̃xxx = −α̃α̃x,
β̃(t, 0) = β̃(t, L) = 0,

β̃x(t, L) = ṽ(t),

β̃(0, ·) = 0,

(131)


γ̃t + γ̃x + γ̃xxx = −(α̃β̃)x,
γ̃(t, 0) = γ̃(t, L) = 0,
γ̃x(t, L) = w̃(t),
γ̃(0, ·) = 0,

(132)


ŷt + ŷx + ŷxxx = 0,
ŷ(t, 0) = ŷ(t, L) = 0,
ŷx(t, L) = 0,
ŷ(0, ·) = PM (y0).

(133)

Let us define

φ := y − ỹ − ρ1/2z α̂− ρzβ̂ − |dz|1/3α̃− |dz|2/3β̃ − |dz|γ̃ − ŷ.
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Then φ = φ(t, x) satisfies
φt + φx + φxxx + φφx = −(φa)x − b,
φ(t, 0) = φ(t, L) = 0,
φx(t, L) = 0,
φ(0, ·) = 0,

(134)

where a := y − φ,

b := ỹỹx + ŷŷx + ρ2zβ̂β̂x + ρ
3/2
z (α̂β̂)x + |dz|4/3β̃β̃x + |dz|5/3(β̃γ̃)x

+|dz|4/3(α̃γ̃)x + |dz|2γ̃γ̃x
+
(
ỹ(ρ

1/2
z α̂+ ρzβ̂ + |dz|1/3α̃+ |dz|2/3β̃ + |dz|γ̃ + ŷ)

)
x

+
(

(ρ
1/2
z α̂+ ρzβ̂)(|dz|1/3α̃+ |dz|2/3β̃ + |dz|γ̃ + ŷ)

)
x

+
(
ŷ(|dz|1/3α̃+ |dz|2/3β̃ + |dz|γ̃)

)
x
.

Here, in order to use equation (134) we need some estimates on its right-hand
side.

Lemma 3.8. There exists C4 > 0 such that for every z, y0 ∈ BLε4 ,

‖φ‖B ≤ C4(‖y0‖L2(0,L) + ‖z‖1/3L2(0,L)), (135)

‖a‖B ≤ C4(‖y0‖L2(0,L) + ‖z‖1/3L2(0,L)), (136)

‖b‖L1(0,T,L2(0,L)) ≤ C4(‖y0‖L2(0,L) + ‖z‖4/3L2(0,L)). (137)

Proof of Lemma 3.8.

‖φ‖B ≤ ‖y‖B + ‖ỹ‖B + ρ1/2z ‖α̂‖B + ρz‖β̂‖B+

|dz|1/3‖α̃‖B + |dz|2/3‖β̃‖B + |dz|‖γ̃‖B + ‖ŷ‖B
≤ C(‖G(z)‖L2(0,T ) + ‖y0‖L2(0,L)) + C(‖Γ0(PH(z))‖L2(0,T ) + ‖y0‖L2(0,L))

+ Cρ1/2z ‖û‖L2(0,T ) + Cρz(‖v̂‖L2(0,T ) + ‖α̂α̂x‖L1(0,T,L2(0,L)))

+ C|dz|1/3‖ũ‖L2(0,T ) + C|dz|2/3(‖ṽ‖L2(0,T ) + ‖α̃α̃x‖L1(0,T,L2(0,L)))

+ C|dz|(‖w̃‖L2(0,T ) + ‖(α̃β̃)x‖L1(0,T,L2(0,L))) + C‖PM (y0)‖L2(0,L).

By noticing that if z = PH(z) + ρzψz + dz(1− cos(x)), then

‖z‖2L2(0,L) = ‖PH(z)‖2L2(0,L) + ρ2z + d2z‖1− cos(x)‖2L2(0,L),

and using (125) and (98), one gets (135). Estimate (136) follows from (135) and
the definition of the function a. To prove (137), one uses (98) being very careful
with the powers which appear. For instance, looking at the function b, one finds the

term (ρ
1/2
z α̂|dz|1/3α̃) which apparently is not bounded by C4‖z‖4/3L2(0,L) for z ∈ BL1 .

This is the reason for which one takes the trajectories α̃ and α̂ disjoint.

Thus, from (134) one obtains the existence of C6 > 0 such that

‖φ‖2B ≤ C6(‖φ‖2B‖a‖2B + ‖y0‖2L2(0,L) + ‖z‖8/3L2(0,L)),

i.e., one has

‖φ‖2B(1− C6‖a‖2B) ≤ C6(‖y0‖2L2(0,L) + ‖z‖8/3L2(0,L)),
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which, together with (96), implies the existence of ε5 and C7 such that for every
z, y0 ∈ BLε5

‖φ‖B ≤ C7(‖y0‖L2(0,L) + ‖z‖4/3L2(0,L)). (138)

Finally, from (138) one obtains

‖z − F ◦G(z)‖L2(0,L) ≤ ‖z − F ◦G(z) + ŷ(T, ·)‖L2(0,L) + ‖ − ŷ(T, ·)‖L2(0,L)

= ‖φ(T, ·)‖L2(0,L) + ‖ŷ(0, ·)‖L2(0,L)

≤ ‖φ‖B + ‖y0‖L2(0,L)

≤ C7(‖y0‖L2(0,L) + ‖z‖4/3L2(0,L)) + ‖y0‖L2(0,L)

≤ (C7 + 1)(‖y0‖L2(0,L) + ‖z‖4/3L2(0,L)),

which ends the proof of Lemma 3.7 with C1 := C7 + 1 and ε3 := ε5.

We proceed now with the fixed point argument on the space H. For w =
(w1

1, w
2
1, . . . , w

1
n−1, w

2
n−1, wn) ∈ R2n−1 fixed, let us denote

Ψw := wn(1− cosx) +

n−1∑
j=1

(w1
jϕ

1
j + w2

jϕ
2
j ), (139)

where the functions ϕij for i = 1, 2, j = 1, . . . , n− 1 are given in (48). Let us study
the map

Π := PH ◦ Λy0,yT (·+ Ψw)

on the subspace H, i.e.,

Π : H −→ H,
Ψ 7−→ Π(Ψ) = Ψ + PH(yT )− PH(F ◦G(Ψ + Ψw)).

In order to prove the existence of a fixed point of the map Π, we will apply the
Banach fixed point theorem to the restriction of Π to the closed ball BLR ∩H with
R > 0 small enough. Using Lemma 3.7 we see that

‖Π(Ψ)‖L2(0,L) ≤ ‖yT ‖L2(0,L) + ‖Ψ + Ψw − F ◦G(Ψ + Ψw)‖L2(0,L)

≤ ‖yT ‖L2(0,L) + C1(‖y0‖L2(0,L) + ‖Ψ + Ψw‖4/3L2(0,L))

≤ (C1 + 1)(‖y0‖L2(0,L) + ‖yT ‖L2(0,L) + |w|4/3) + C1‖Ψ‖4/3L2(0,L)

≤ (C1 + 1)(2r + |w|4/3) + C1‖Ψ‖4/3L2(0,L).

Hence, if we choose R, r and w such that

R4/3 ≤ R

2C1
and (2r + |w|4/3) ≤ R

2(C1 + 1)
,

then it follows that

‖Π(Ψ)‖L2(0,L) ≤ R and so Π(BLR ∩H) ⊂ (BLR ∩H).

It remains to prove that the map Π is a contraction. Let Ψ1,Ψ2 ∈ BLR ∩H. Let
y = y(t, x), q = q(t, x), ỹ = ỹ(t, x) and q̃ = q̃(t, x) be the solutions of the following
problems 

yt + yx + yxxx + yyx = 0,
y(t, 0) = y(t, L) = 0,
yx(t, L) = G(Ψ1 + Ψw),
y(0, ·) = y0,
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qt + qx + qxxx + qqx = 0,
q(t, 0) = q(t, L) = 0,
qx(t, L) = G(Ψ2 + Ψw),
q(0, ·) = y0,
ỹt + ỹx + ỹxxx = 0,
ỹ(t, 0) = ỹ(t, L) = 0,
ỹx(t, L) = Γ0(Ψ1),
ỹ(0, ·) = PH(y0),
q̃t + q̃x + q̃xxx = 0,
q̃(t, 0) = q̃(t, L) = 0,
q̃x(t, L) = Γ0(Ψ2),
q̃(0, ·) = PH(y0).

Let us define φ := y − ỹ, ψ := q − q̃ and γ := φ− ψ. One sees that γ satisfies
γt + γx + γxxx + γγx = −(γa)x − b,
γ(t, 0) = γ(t, L) = 0,
γx(t, L) = 0,
γ(0, ·) = 0,

(140)

where

a := ỹ + ψ and b := (q(ỹ − q̃))x + (ỹ − q̃)(ỹ − q̃)x.
Recall that from (101), (102),(103), there exist constants C8, C9 such that

‖b‖L1(0,T,L2(0,L)) ≤ C8 (‖q‖B + ‖ỹ‖B + ‖q̃‖B) ‖ỹ − q̃‖B, (141)

‖(aγ)x‖L1(0,T,L2(0,L)) ≤ C8 (‖q‖B + ‖ỹ‖B + ‖q̃‖B) ‖γ‖B. (142)

‖γ‖2B ≤ C9(‖q‖B + ‖ỹ‖B + ‖q̃‖B)2(‖ỹ − q̃‖2B + ‖γ‖2B). (143)

In addition, since z := ỹ − q̃ satisfies the following linear equation
zt + zx + zxxx = 0,
z(t, 0) = z(t, L) = 0,
zx(t, L) = Γ0(Ψ1)− Γ0(Ψ2),
z(0, ·) = 0,

there exists C10 > 0 such that

‖ỹ − q̃‖B ≤ C10‖Γ0(Ψ1)− Γ0(Ψ2)‖L2(0,T )

and so, from (90), one gets

‖ỹ − q̃‖B ≤ C10D2‖Ψ1 −Ψ2‖L2(0,L). (144)

Moreover, it is easy to see that there exists a constant C11 > 0 such that

‖q‖B + ‖q̃‖B + ‖ỹ‖B ≤ C11(‖y0‖L2(0,L) + ‖Ψ1‖L2(0,L) + ‖Ψ2‖L2(0,L) + |w|1/3).(145)

Thus, using (143), (144) and (145) we see that if R, |w|, r are small enough, it
follows that

‖γ‖B ≤
1

2
‖Ψ1 −Ψ2‖L2(0,L).
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Therefore, we have

‖Π(Ψ1)−Π(Ψ2)‖L2(0,L) ≤
‖Ψ1 − F ◦G(Ψ1 + Ψw)−Ψ2 + F ◦G(Ψ2 + Ψw)‖L2(0,L)

= ‖γ(T )‖L2(0,L) ≤ ‖γ‖B ≤
1

2
‖Ψ1 −Ψ2‖L2(0,L),

which implies the existence of a unique fixed point Ψ(y0, yT , w) ∈ BLR ∩ H of the
map Π|BLR∩H .

Let us look for a fixed point in M . We now apply the Brouwer fixed point
theorem to the restriction of the map

τ : M −→ M,
Ψw 7→ PM (Ψw + yT − F ◦G(Ψw + Ψ(y0, yT , w))),

to the closed ball BL
R̂
∩M with R̂ small enough.

The controls û, v̂, ũ, ṽ and w̃ can be chosen in such a way so that the function G
is continuous. Thus, it is easy to see that the map (y0, yT , w) 7−→ Ψ(y0, yT , w) is
also continuous in a neighborhood of 0 ∈ L2(0, L)2 × R2n−1. Using this continuity,

Lemma 3.7, and choosing r small enough, we get the existence of a radius R̂ > 0 such
that τ(BL

R̂
∩M) ⊂ BL

R̂
∩M . This inclusion and the continuity of the map τ allow

us to apply the Brouwer fixed point theorem. Therefore, there exists w̃ ∈ R2n−1

with |w̃| ≤ R̂ such that Ψ̃ := Ψ(y0, yT , w̃) satisfies

PM (yT − F ◦G(Ψ̃ + Ψw̃)) = 0. (146)

Using the fact that

Π(Ψ̃) = PH(Ψ̃ + yT − F ◦G(Ψ̃ + Ψw̃)) = Ψ̃,

we obtain

PH(yT − F ◦G(Ψ̃ + Ψw̃)) = 0,

which together with (146), implies that

yT = F ◦G(Ψ̃ + Ψw̃),

which ends the proof of Theorem 1.5.

4. Internal stabilization. This section is devoted to the proof of Theorems 1.6,
1.7 and 1.8. We define for each time the energy of the solution of our KdV equation
as its L2-norm

E(t) =

∫ L

0

|y(t, x)|2 dx.

We are interested in the long-time behavior of the energy E(t). More precisely
we want to prove the exponential decay of E(t) as t goes to infinity. First, we will
prove the stability for the linear system on a noncritical domain. Second, we deal
with the linear case on a critical domain. Finally, for the nonlinear system we will
get a local result and a semi-global result by applying two different approaches.
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4.1. Linear system on a noncritical interval. We consider the linear system yt + yx + yxxx = 0,
y(t, 0) = y(t, L) = yx(t, L) = 0,
y(0, x) = y0,

(147)

for a noncritical domain L /∈ N . The observability inequality (29) holds, which can
be written for the direct linear system as follows

∀T > 0,∃C > 0,∀y0 ∈ L2(0, L), ‖yx(·, 0)‖L2(0,T ) ≥ C‖y0‖L2(0,L). (148)

By performing integration by parts in the equation∫ L

0

(yt + yx + yxxx)y dx = 0

we get

d

ds

∫ L

0

|y(s, x)|2 dx = −|yx(s, 0)|2 ≤ 0 (149)

and then by integrating on (0, 1) and using (148) with T = 1 we obtain the existence
of C such that∫ L

0

|y(1, x)|2 dx−
∫ L

0

|y0(x)|2 dx = −
∫ 1

0

|yx(s, 0)|2 ds ≤ − 1

C2

∫ L

0

|y0(x)|2 dx,

that implies ∫ L

0

|y(1, x)|2 dx ≤ C2 − 1

C2

∫ L

0

|y0(x)|2 dx.

Of course we also have∫ L

0

|y(t+ 1, x)|2 dx ≤ C2 − 1

C2

∫ L

0

|y(t, x)|2 dx, (150)

which gives the exponential decay to the origin of the solutions. Indeed, let k ≤ t ≤
k + 1. From (149), (150) and denoting γ := C2−1

C2 < 1, we have

E(t) ≤ E(k) ≤ γE(k − 1) ≤ γ2E(k − 2) ≤ · · · ≤ γkE(0)

=
γk+1

γ
E(0) =

1

γ
e(k+1) ln(γ)E(0) ≤ 1

γ
e−t| ln(γ)|E(0)

which ends the proof of Thereom 1.6 with a = 0 in a noncritical domain.

4.2. Linear system on a critical interval. If there is no damping (a = 0), we
know from the controllability analysis that in a critical domain, there are solutions
of the linear system which do not decay to zero. In this way a dissipative mechanism
is needed in this case. We consider an internal damping given by the term a(x)y in yt + yx + yxxx + ay = 0,

y(t, 0) = y(t, L) = yx(t, L) = 0,
y(0, x) = y0,

(151)

with a ∈ L∞(0, L) possibly localized in a small subdomain of (0, L):{
a(x) ≥ a0 > 0, ∀x ∈ ω,
where ω is nonempty open subset of (0, L).

(152)
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Proof of Theorem 1.6. By performing integration by parts in the equation∫ L

0

(yt + yx + yxxx + ay)y dx = 0

we get

d

ds

∫ L

0

|y(s, x)|2 dx = −|yx(s, 0)|2 −
∫ L

0

a(x)|y(s, x)|2 dx ≤ 0 (153)

and then by integrating on (0, t) we obtain∫ L

0

|y(t, x)|2 dx−
∫ L

0

|y0(x)|2 dx = −
∫ t

0

|yx(s, 0)|2 ds−
∫ t

0

∫ L

0

a(x)|y(s, x)|2 dxds

The same proof as before runs if we are able to prove that ∀T > 0,∃C > 0 such
that

∀y0 ∈ L2(0, L), ‖yx(·, 0)‖2L2(0,T ) +

∫ T

0

∫ L

0

a(x)|y(s, x)|2 dxdt ≥ C2‖y0‖2L2(0,L).(154)

From direct computations (as in (20) and considering the term ay), we obtain

‖y0‖2L2(0,L) ≤
1

T
‖y‖2L2(0,T ;L2(0,L))

+ ‖yx(·, 0)‖2L2(0,T ) + 2

∫ T

0

∫ L

0

a(x)|y(t, x)|2 dxdt, (155)

and therefore we will be done if we prove that there exists a constant K > 0 such
that

K‖y‖2L2(0,T ;L2(0,L)) ≤ ‖yx(·, 0)‖2L2(0,T ) +

∫ T

0

∫ L

0

a(x)|y(t, x)|2 dxdt. (156)

As we did in the proof of the inequality observability we proceed by contradiction.
By assuming that (156) does not hold, we build a sequence of initial data {yn0 }n∈N ⊂
L2(0, L) such that ‖yn0 ‖L2(0,L) = 1 and the corresponding solutions of (151) satisfies

‖ynx (·, 0)‖L2(0,L) → 0,

∫ T

0

∫ L

0

a(x)|yn(t, x)|2 dxdt→ 0, as n→∞

As previously, we can pass to the limit and get a nontrivial solution y ∈ B of
(151) satisfying

yx(·, 0) = 0,

∫ T

0

∫ L

0

a(x)|y(t, x)|2 dxdt = 0, (157)

which implies that ay = 0 and therefore the limit y is solution of

yt + yx + yxxx = 0. (158)

In order to get a contradiction, we have to use the property (152) of a = a(x).
Recall that ω is a nonempty open subset of (0, L) as small as we want. From (157)
and (152) we get that the limit solution is zero in ω, i.e.,

y(t, x) = 0, ∀x ∈ ω, ∀t ∈ (0, T ).

As the equation (158) is linear, latter condition implies the solution y is zero ev-
erywhere because of the Holmgrem’s Uniqueness Theorem. This is a contradiction
and consequently we have proved Theorem 1.6.
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Remark 12. An ad-hoc Carleman estimate can also be used in order to quantify
this unique continuation property. In the context of KdV equations on bounded
domains, this kind of estimates have already been obtained. In [37, 24] some one-
parameter Carleman estimates are proved to get some boundary observability in-
equalities. In [2] a two-parameter Carleman estimate is obtained to solve an inverse
problem with boundary measurements. The latter can be easily adapted to obtain
the unique continuation property.

4.3. Nonlinear system. First, we prove Theorem 1.7, i.e., the exponential decay
of small amplitude solutions. This is basically a linear result deduced from applying
Theorem 1.6 to system yt + yx + yxxx + ay + yyx = 0,

y(t, 0) = y(t, L) = yx(t, L) = 0,
y(0, x) = y0.

(159)

Proof of Theorem 1.7. Consider ‖y0‖L2(0,L) ≤ r with r to be chosen later. The

solution y of (159) can be written as y = y1 + y2 where y1 is the solution of y1t + y1x + y1xxx + ay1 = 0,
y1(t, 0) = y1(t, L) = y1x(t, L) = 0,
y1(0, x) = y0

(160)

and y2 is the solution of y2t + y2x + y2xxx + ay2 = −yyx,
y2(t, 0) = y2(t, L) = y2x(t, L) = 0,
y2(0, x) = 0.

(161)

Thus, from (150) and the energy estimates for linear systems, we have

‖y(t, ·)‖L2(0,L) ≤ ‖y1(t, ·)‖L2(0,L) + ‖y2(t, ·)‖L2(0,L)

≤ γ‖y0‖L2(0,L) + C‖yyx‖L1(0,T ;L2(0,L)) ≤ γ‖y0‖L2(0,L) + C‖y‖2L2(0,T ;H1(0,L))

(162)

with γ < 1. Of course we need somewhere a nonlinear estimate and it is here in
order to deal with the last term in the previous inequality. Let us multiply equation
(159) by xy and integrate to obtain

3

∫ T

0

∫ L

0

|yx|2dxdt+

∫ L

0

x|y(T, ·)|2dx+ 2

∫ T

0

∫ L

0

xa|y|2dxdt

=

∫ T

0

∫ L

0

|y|2dxdt+

∫ L

0

x|y0|2dx− 2

∫ T

0

∫ L

0

xyx|y|2dxdt. (163)

Using

3

∫ T

0

∫ L

0

xyx|y|2dxdt = −
∫ T

0

∫ L

0

|y|3dxdt

into (163) we get

‖y‖2L2(0,T ;H1(0,L)) ≤
(3T + L)

3
‖y0‖L2(0,L) +

2

9

∫ T

0

∫ L

0

|y|3dxdt. (164)
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As y ∈ L2(0, T ;H1(0, L)) and H1(0, L) embeds into C([0, L]), we have∫ T

0

∫ L

0

|y|3dxdt ≤
∫ T

0

‖y‖L∞(0,L)

∫ L

0

|y|2dxdt ≤ C
∫ T

0

‖y‖H1(0,L)

∫ L

0

|y|2dxdt

≤ C‖y‖2L∞(0,T ;L2(0,L))

∫ T

0

‖y‖H1(0,L)dt ≤ CT 1/2‖y0‖2L2(0,L)‖y‖L2(0,T ;H1(0,L)).

Thanks to this and (164) we obtain

‖y‖2L2(0,T ;H1(0,L)) ≤
(8T + 2L)

3
‖y0‖2L2(0,L) +

TC

27
‖y0‖4L2(0,L) (165)

which combined with (162) gives the existence of C > 0 such that

‖y(t, ·)‖L2(0,L) ≤ ‖y0‖L2(0,L)

{
γ + C‖y0‖L2(0,L) + C‖y0‖3L2(0,L)

}
. (166)

Given ε > 0 small enough such that (γ + ε) < 1, we can take r small enough so
that r + r3 < ε

C , in order to have

‖y(t, ·)‖L2(0,L) ≤ (γ + ε)‖y0‖L2(0,L)

The rest of the proof runs as before thanks to the fact that (γ + ε) < 1. Thus,
we end the proof of Theorem 1.7.

Remark 13. In previous result, constants C and µ can be chosen as close as we
want to the corresponding constants for the linear result given by Theorem 1.6. Of
course, the smaller ε is chosen, the smaller is the radius r defining the set of initial
data for which the exponential decay rate is valid.

Now, we focus on the proof of Theorem 1.8. Here, we will deal directly with
the nonlinear equation in order to get the semi-global result. There arise two main
difficulties. On one hand there are nonlinear terms in the equation (159) which are
hard to deal with in order to pass to the limit as in the previous argument. On
the other hand, the nonlinear character of (159) prevents the use of Holmgrem’s
Theorem. Instead of that result we will have to use a nonlinear unique continuation
result. We will use a result by Saut and Scheurer, which can be written as follows.

Theorem 4.1. ([43, Theorem 4.2]) Let u ∈ L2(0, T ;H3(0, L)) be a solution of

ut + ux + uxxx + uux = 0

such that

u(t, x) = 0, ∀t ∈ (t1, t2),∀x ∈ ω
with ω an open nonempty subset of (0, L). Then

u(t, x) = 0, ∀t ∈ (t1, t2),∀x ∈ (0, L).

In order to apply this result, we have to prove that the limit solution in our contra-
diction argument is more regular, at least in L2(0, T ;H3(0, L)). See also [49, 22, 26].

Proof of Theorem 1.8. Let us notice that
∫ L
0
y2yxdx = 0 and therefore the same

computations done in Section 4.2 say that if we integrate by parts in the equation∫ L

0

(yt + yx + yxxx + ay + yyx)y dx = 0,
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we get∫ L

0

|y(t, x)|2 dx−
∫ L

0

|y0(x)|2 dx =

−
∫ t

0

|yx(s, 0)|2 ds−
∫ t

0

∫ L

0

a(x)|y(s, x)|2 dxds. (167)

The same proof as before runs if we are able to prove that ∀T,R > 0, ∃K(T,R) > 0
such that

‖yx(·, 0)‖2L2(0,T ) +

∫ T

0

∫ L

0

a(x)|y(t, x)|2 dxdt ≥ K‖y0‖2L2(0,L) (168)

for any initial data satisfying ‖y0‖L2(0,L) ≤ R. We can easily see that it is enough
to prove that for any T,R > 0 there exists a positive constant K = K(T,R) such
that

K‖y‖2L2(0,T ;L2(0,L)) ≤ ‖yx(·, 0)‖2L2(0,T ) +

∫ T

0

∫ L

0

a(x)|y(t, x)|2 dxdt (169)

for solutions of the nonlinear system (159) with ‖y0‖L2(0,L) ≤ R. Indeed, integrating
in time (167) we get

T

∫ L

0

|y0(x)|2 dx ≤∫ T

0

∫ L

0

|y(t, x)|2 dxdt+ T

∫ T

0

|yx(t, 0)|2 dt+ T

∫ T

0

∫ L

0

a(x)|y(t, x)|2 dxdt,

which together (169) imply (168).
We assume that (169) does not hold. By choosing K = 1/n, we built a sequence

{yn}n∈N ⊂ B solving (159) with ‖yn(0, ·)‖L2(0,L) ≤ R and such that

lim
n→∞

‖yn‖2L2(0,T ;L2(0,L))

‖ynx (·, 0)‖2L2(0,T ) +
∫ T
0

∫ L
0
a(x)|yn(t, x)|2 dxdt

=∞.

We define λn := ‖yn‖L2(0,T ;L2(0,L)) and vn := yn

λn
. We get that vn satisfies vnt + vnx + vnxxx + avn + λnv

nvnx = 0,
vn(t, 0) = vn(t, L) = vnx (t, L) = 0,
‖vn‖L2(0,T ;L2(0,L)) = 1

(170)

and

‖vnx (·, 0)‖2L2(0,T ) +

∫ T

0

∫ L

0

a(x)|vn(t, x)|2 dxdt→ 0 (171)

as n→∞.
Notice that (155) still holds for solutions of the nonlinear equation thanks to the

fact ∫ L

0

y2yxdx = 0.

Using (155) we see that {vn(0, ·)}n∈N is bounded in L2(0, L). From (165), {vn}n∈N
is bounded in L2(0, T ;H1(0, L)). Thus, we can prove that {vnvnx}n∈N is a subset of
L2(0, T ;L1(0, L)). In fact

‖vnvnx‖L2(0,T ;L1(0,L)) ≤ ‖vn‖C([0,T ];L2(0,L))‖vn‖L2(0,T ;H1(0,L)).
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All this is used with the equation (170) to say that {vnt }n∈N is bounded in the space
L2(0, T ;H1(0, L)) and consequently (see Lemma 3.1) a subsequence of {vn}n∈N,
also denoted by {vn}n∈N converges strongly in L2(0, T ;L2(0, L)) to a limit v with
‖v‖L2(0,T ;L2(0,L)) = 1. Furthermore,

‖vx(·, 0)‖2L2(0,T ) +

∫ T

0

∫ L

0

a(x)|v(t, x)|2 dxdt

≤ lim inf
n→∞

{
‖vnx (·, 0)‖2L2(0,T ) +

∫ T

0

∫ L

0

a(x)|vn(t, x)|2 dxdt

}
= 0

and therefore

v(t, x) = 0, ∀x ∈ ω,∀t ∈ (0, T ), and vx(t, 0) = 0 ∀t ∈ (0, T ). (172)

Since ‖yn(0, ·)‖L2(0,L) ≤ R we can extract from {λn}n∈N a convergent subse-
quence, still denoted by {λn}n∈N, such that λn → λ with λ ≥ 0. Thus, the limit
function v satisfies vt + vx + vxxx + λvvx = 0,

v(t, 0) = v(t, L) = vx(t, L) = 0,
‖v(0, ·)‖L2(0,L) ≤ R, ‖v‖L2(0,T ;L2(0,L)) = 1,

(173)

with either λ = 0 or λ > 0.
We have now two possibilities:

• If λ = 0, then v satisfies the linear equation and condition (172). Thus, we
can apply Holmgrem’s Theorem to get that the solution v is the trivial one
and get a contradiction.

• If λ > 0, then v satisfies the nonlinear equation and condition (172). Moreover,
we can prove that v ∈ L2(0, T ;H3(0, L)). Indeed, let us consider u := vt,
which satisfies{

ut + ux + uxxx + λvxu+ λvux = 0,
u(t, 0) = u(t, L) = ux(t, L) = 0,

(174)

with

u(0, ·) = −v′(0, ·)− v′′′(0, ·)− λv(0, ·)v′(0, ·) ∈ H−3(0, L)

and

u(t, x) = 0, ∀x ∈ ω,∀t ∈ (0, T ), and ux(t, 0) = 0 ∀t ∈ (0, T ).

From Lemma A.2 (in the Appendix) we get u(0, ·) ∈ L2(0, L) and so u =
vt ∈ B. In this way, vxxx = (−vt−vx−λvvx) ∈ L2(0, T ;L2(0, L)) and therefore
v ∈ L2(0, T ;H3(0, L)). We have used that v, vt ∈ L2(0, T ;H1(0, L)) and hence
v ∈ C([0, T ];H1(0, L)) in order to prove that vvx ∈ L2(0, T ;L2(0, L)).

Finally we can conclude that the solution v is the trivial one by applying
Theorem 4.1 and consequently we obtain a contradiction.

We have seen that any of two possibilities (λ = 0 or λ > 0) gives a contradiction,
which ends the proof of Theorem 1.8.

Remark 14. The semi-global character of this result comes from the fact that even
if we are able to chose any radius R for the initial data, the decay rate µ depends
on R. In the proof, we see that we were able to pass to the limit because the initial
data were bounded.
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5. Some open problems. In this section we state some open problems concerning
controllability and stabilization for the Korteweg-de Vries control system.

Open Problem 1. In Theorem 1.5, we get the local controllability for (65) provided
that the time of control is large enough. Is this condition on the time really nece-
ssary?

This is an interesting open problem since one knows that even if the speed of
propagation of the Korteweg-de Vries equation is infinite, it may exist a minimal
time of control. This is for example the case of a nonlinear control system for the
Schrödinger equation studied by Beauchard and Coron in [4]. They proved the
local controllability of this system along the ground state trajectory for a large time
and Coron proved in [16] and [17, Theorem 9.8] that this local controllability does
not hold in small time, even if the Schrödinger equation has an infinite speed of
propagation.

Open Problem 2. What is the minimal regularity of the solution u = u(t, x) in
Thereom 4.1?

In the proof of Theorem 1.7 we use the Unique Continuation Principle for the
nonlinear KdV equation given by Theorem 4.1. To do that, we first prove that the
solution is regular enough. With a result requiring a less regular solution, this step
may not be necessary.

Open Problem 3. Let L be a critical length. Let y0 ∈ L2(0, L) and y the solution
of  yt + yx + yxxx + yyx = 0,

y(t, 0) = y(t, L) = yx(t, L) = 0,
y(0, ·) = y0.

Does the solution y decay to zero as t goes to infinity?

In other words, the nonlinearity gives us the stability in the critical cases as it
does concerning controllability? In order to answer this question, a really nonlinear
method is needed because with a first-order approximation one obtains the linear
system which has some solution conserving its L2-norm. On the other hand, it
is not clear that the power series expansion method works. It strongly needs the
controls to be able to use higher-order approximations.

Open Problem 4. Is the system{
yt + yx + yxxx + yyx = 0,
y(t, 0) = 0, y(t, L) = h(t), yx(t, L) = 0,

exactly controllable?

This equation was studied in [25] where they proved that the linearized system
around the origin is exactly controllable if and only if L does not belong to a set of
critical values, which is different to the one presented here. Does the nonlinearity
give the controllabilty? In this case, one difficulty is that there is no an explicit
expression for the critical lengths.

Open Problem 5. Is the system{
yt + yx + yxxx + yyx = 0,
y(t, 0) = 0, yx(t, L) = h(t), yxx(t, L) = 0,

exactly controllable?
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As in the previous open problem, the linear system is exactly controllable if and
only if L does not belong to a set of critical values, which is different from those
already mentioned. See [11] where the noncritical cases are solved as well as the cases
where two or three boundary controls are considered. To address this problem and
the previous one, a possible approach would be to prove the exact controllability of
the nonlinear equation around nontrivial stationary solutions (as proved by Crépeau
in [20, 21] in the case of homogeneous Dirichlet boundary conditions), and then to
apply the method introduced in [15] (see also [3, 4]), that is the return method
(see [13, 14]) together with quasi-static deformations (see also [19]). With such a
method, one should obtain the exact controllability for a large time. However, it
seems that the minimal time required with this approach is far from being optimal.

Open Problem 6. Is the system yt + yx + yxxx + yyx = 0,
y(t, 0) = y(t, L) = 0,
yx(t, L)− yx(t, 0) = h(t),

well-posed in L2(0, L) or H1(0, L)?

This problem is linked with the boundary stabilization. There are some feedback
laws h = F (y) stabilizing the linearized system around the origin (see [10]), but
for these boundary conditions there is no Kato smoothing effect allowing us to deal
with the nonlinearity.

Appendix A. Proofs of some technical lemmas.

Lemma A.1. The function S is not identically equal to 0.

Proof. Let a ∈ Σ and λ = 2ai(4a2− 1). Let µ ∈ C and let yµ = yµ(x) be a solution
of {

µyµ + y′µ + y′′′µ = 0,
yµ(0) = yµ(L) = 0.

We multiply (81) by yµ and integrate by parts on [0, L]. Thus, we get

(λ− ip+ µ)

∫ L

0

φλyµdx− φ′λ(L)
(
y′µ(L)− y′µ(0)

)
=

∫ L

0

yλϕ
′yµdx. (175)

From now on, we set µ = µ(a) := −λ+ ip. With this choice we obtain from (175)

−S(a)
(
y′µ(L)− y′µ(0)

)
=

∫ L

0

yλϕ
′yµdx.

Therefore, if we prove that the function

a ∈ Σ −→ J(a) :=

∫ L

0

yλϕ
′yµdx ∈ C,

is not identically equal to 0, the proof of this lemma is ended. Let b ∈ R be such
that µ = 2bi(4b2 − 1). We take the function yµ given by

yµ(x) = De(−
√
3b2−1−bi)x + (1−D)e(

√
3b2−1−bi)x − e2bix, (176)

where

D =
e2biL − e(

√
3b2−1−bi)L

e(−
√
3b2−1−bi)L − e(

√
3b2−1−bi)L

.
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In the next computations, we use the fact that eiγ1L = eiγ2L = eiγ3L (see (49))
and the following formula∫ L

0

e(v+iw)xϕ′ =

(
1 + γ21 − 2p/γ1

)(
1− e(v+iw+iγ1)L

)
(vi− w)

(vi− w)3 − (vi− w) + p
(177)

which holds if v + iw 6= −iγm for m = 1, 2, 3.
We want to show that as a → ∞, the following expression diverges, which is in

contradiction with the fact that J(a) ≡ 0

R(a) :=
(e(−

√
3a2−1−ai)L − e(

√
3a2−1−ai)L)(e(−

√
3b2−1−bi)L − e(

√
3b2−1−bi)L)

1 + γ21 − 2p/γ1
J(a).

In fact, by using (177), one computes explicitly J(a) and thus one sees that as a
tends to infinity, the dominant term of R(a) is given by

Z(a) := e(
√
3a2−1+

√
3b2−1)L

{ (e(−ai−bi)L − e(ai+bi+γ1i)L)(−2a− 2b)

(−2a− 2b)3 − (−2a− 2b) + p

+
e(−ai−bi)L(−i

√
3a2 − 1− i

√
3b2 − 1 + a+ b)

(−i
√

3a2 − 1− i
√

3b2 − 1 + a+ b)3 − (−i
√

3a2 − 1− i
√

3b2 − 1 + a+ b) + p

− e(ai+bi+γ1i)L(i
√

3a2 − 1 + i
√

3b2 − 1 + a+ b)

(i
√

3a2 − 1 + i
√

3b2 − 1 + a+ b)3 − (i
√

3a2 − 1 + i
√

3b2 − 1 + a+ b) + p

+
e(ai+bi+γ1i)L(i

√
3a2 − 1 + a− 2b)

(i
√

3a2 − 1 + a− 2b)3 − (i
√

3a2 − 1 + a− 2b) + p

− e(−ai−bi)L(−i
√

3b2 − 1− 2a+ b)

(−i
√

3b2 − 1− 2a+ b)3 − (−i
√

3b2 − 1− 2a+ b) + p

+
e(ai+bi+γ1i)L(i

√
3b2 − 1− 2a+ b)

(i
√

3b2 − 1− 2a+ b)3 − (i
√

3b2 − 1− 2a+ b) + p

− e(−ai−bi)L(−i
√

3a2 − 1 + a− 2b)

(−i
√

3a2 − 1 + a− 2b)3 − (−i
√

3a2 − 1 + a− 2b) + p

}
Using that as a → ∞, b → −∞ and a + b ∼ −p/(24a2), we obtain the following
asymptotical expression for the right hand factor of Z(a),

−(e
p

24a2
iL − e−

p

24a2
iL+iγ1L)

12a2
∼

{
− (1−eiγ1L)

12a2 if eiγ1L 6= 1,

− ipL
144a4 if eiγ1L = 1.

One can see that in both cases Z(a) diverges as a → ∞ and therefore R(a) does,
which implies that J(a) is not identically equal to 0. It ends the proof of this
lemma.

Lemma A.2. ([33, Lemma 3.2]) There exists a constant C = C(T,R) such that

‖ux(·, 0)‖2L2(0,T ) + ‖u(0, ·)‖2H−3(0,L) ≥ C‖u(0, ·)‖2L2(0,L).

holds for any solution u of (174) with v solution of (173).

Proof. By multiplying (174) by (T − t)u, we can deduce

‖u(0, ·)‖2L2(0,L) ≤
1

T
‖u‖2L2(0,T ;L2(0,L)) + ‖ux(·, 0)‖2L2(0,T ) +

∫ T

0

∫ L

0

vx|u(t, x)|2 dxdt
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Using previous estimates and∫ T

0

∫ L

0

vx|u(t, x)|2 dxdt ≤
∫ T

0

‖vx‖L2(0,L)‖u‖2L4(0,L)

≤ ‖v‖L2(0,T ;H1(0,L))‖u‖2L4(0,T ;L4(0,L))

we get a constant C = C(T,R) such that

‖u(0, ·)‖2L2(0,L) ≤ C‖u‖
2
L4(0,T ;L4(0,L)) + ‖ux(·, 0)‖2L2(0,T ) (178)

We see that in order to prove this Lemma it is enough to prove

‖u‖2L4(0,T ;L4(0,L)) ≤ C
{
‖ux(·, 0)‖2L2(0,T ) + ‖u(0, ·)‖2H−3(0,L)

}
We argue by contradiction. Then, there exists a sequence {un}n∈N ⊂ B solving

(174) with ‖un(0, ·)‖L2(0,L) ≤ R and such that

lim
n→∞

‖un‖2L4(0,T ;L4(0,L))

‖unx(·, 0)‖2L2(0,T ) + ‖un0‖2H−3(0,L)

=∞.

We define λn := ‖un‖L4(0,T ;L4(0,L)) and wn := un

λn
. We get that wn satisfies wnt + wnx + wnxxx + λn(vwn)x = 0,

wn(t, 0) = wn(t, L) = wnx (t, L) = 0,
‖wn‖L4(0,T ;L4(0,L)) = 1

(179)

and

‖wnx (·, 0)‖2L2(0,T ) + ‖wn(0, ·)‖2H−3(0,L) → 0 (180)

as n→∞.
We can check that wn is bounded in L2(0, T ;H1(0, L)) and that

‖(uwn)x‖L2(0,T ;L1(0,L))

≤ ‖wn‖L∞(0,T ;L2(0,L))‖u‖L2(0,T ;H1(0,L)) + ‖u‖L∞(0,T ;L2(0,L))‖wn‖L2(0,T ;H1(0,L))

By using the equation, we see that {wnt }n∈N is bounded in L2(0, T ;H−2(0, L)).

We claim that {wn}n∈N is bounded in L4(0, T ;H
5
6 (0, L)). Indeed, as {wn}n∈N

is bounded in L2(0, T ;H1(0, L)) and in L∞(0, T ;L2(0, L)), and consequently in
Lq(0, T ;L2(0, L)) for any q > 0, we can interpolate between L5(0, T ;L2(0, L)) and

L2(0, T ;H1(0, L)) to get that {wn}n∈N is bounded in L4(0, T ;H
5
6 (0, L)).

Thanks to Lemma 3.1 and the fact that the embedding H
5
6 (0, L) ↪→ L4(0, L) is

compact, we get that

wn → w, strongly in L4(0, T ;L4(0, L))

with ‖w‖L4(0,T ;L4(0,L)) = 1. In addition

‖wx(·, 0)‖2L2(0,T ) + ‖w(0, ·)‖H−3(0,L)

≤ lim inf
n→∞

{
‖wnx (·, 0)‖2L2(0,T ) + ‖wn(0, ·)‖H−3(0,L)

}
= 0

As w is the solution of (174) with intial data w(0, ·) = 0, then w must be zero
and we get a contradiction, which ends the proof of this lemma.
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