
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. CONTROL OPTIM. c© 2018 Society for Industrial and Applied Mathematics
Vol. 56, No. 4, pp. 3035–3049

ON THE CONTROLLABILITY OF THE IMPROVED BOUSSINESQ
EQUATION∗
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Abstract. The improved Boussinesq equation is studied in this paper. Control properties for
this equation posed on a bounded interval are first considered. When the control acts through the
Dirichlet boundary condition the linearized system is proved to be approximately but not spectrally
controllable. In a second part, the equation is posed on the one-dimensional torus and distributed
moving controls are considered. Under some condition on the velocity at which the control moves,
exact controllability results for both linear and nonlinear improved Boussinesq equations are obtained
applying the moment method and a fixed point argument.
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1. Introduction. In [1], Boussinesq derived the so-called bad Boussinesq equa-
tion, written

ytt − yxx − yxxxx = (y2)xx.(1)

This equation describes the flow of shallow water waves with small amplitudes in a flat
bottom canal. It is called “bad” due to its poor existence and uniqueness properties.
For instance, unlike the “good” Boussinesq equation, which reads as

ytt − yxx + yxxxx = (y2)xx,(2)

there is no local well-posedness result for (1). However, in [12], Makhankov proved
that the bad Boussinesq equation (1) can be approached by the following one, called
the improved Boussinesq equation:

ytt − yxx − yxxtt = (y2)xx.(3)

The well-posedness problem for the improved Boussinesq equation (3) with Dirichlet
boundary conditions has been studied by Zhijian in [20].

Concerning the control of these equations, due to the lack of a well-posedness
framework, there is no control result dealing with the bad Boussinesq equation. On
the other hand, the boundary controllability for the good Boussinesq equation (2)
posed on a bounded domain was addressed in [6]. In that paper, a local controllability
result for the nonlinear equation is obtained with the help of the Hilbert uniqueness
method for the controllability of the linearized equation and a fixed point theorem to
obtain the local controllability of the nonlinear one.
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3036 EDUARDO CERPA AND EMMANUELLE CRÉPEAU

In this paper, we are concerned with the controllability of the improved Boussi-
nesq equation (3) posed on either a bounded or periodic domain. In the case of a
bounded domain [0, 1] with boundary control, we prove that the linearized equation
is not spectrally controllable and, consequently, not null controllable. Despite these
negative results, we prove an approximate controllability result. Those results of
noncontrollability are due to the existence of a finite limit point in the spectrum.
Previous results of bad control properties due to the spectrum have already been no-
ticed by Russell [18] for the beam equation with internal damping and by Leugering
and Schmidt [10] for the plate equation. For our study we strongly use the articles
written by Micu [14] for the linearized Benjamin–Bona–Mahony (BBM) equation and
by Rosier and Rouchon [15] for the structurally damped wave equation.

In order to improve the control properties of our equation, we study the improved
Boussinesq equation (3) posed on a periodic domain, and we consider a moving dis-
tributed control. This kind of moving actuator has been considered previously in the
literature since the work [11] by Lions. In that paper, the wave equation with mov-
ing point control was considered (see also [8]). For the same equation, we find more
recent papers [2, 3, 13, 5]. Concerning parabolic equations, we can cite the papers
[7, 4] dealing with semilinear and linear heat equations. In [16], Rosier and Zhang
proved that the BBM equation posed in the torus with a moving distributed control
is locally exactly controllable for a control time large enough.

In the second part of this paper, we are able to prove the local exact controllabil-
ity of the improved Boussinesq equation under a condition on the velocity at which
the control moves. The controllability is proved with the moment method for the
linearized equation and then with a fixed point argument in order to deal with the
nonlinearity; as our equation inherits some important properties of the BBM equation
we use the ideas of the proofs in [16] and [13] to obtain our results.

The rest of this paper is organized as follows. In section 2 we consider the lin-
earized improved Boussinesq equation posed on a bounded domain with a boundary
control. The approximate controllability and the lack of exact controllability are
proved. The periodic case with a moving control is studied in section 3, where ex-
act control results are obtained for both linear and nonlinear improved Boussinesq
equations.

2. Boundary control on a bounded domain. In this section we look at the
boundary controllability of the linearized improved Boussinesq equation posed on the
finite interval [0, 1]. Namely, given a time T > 0, an initial condition (y0, y1), and a
target (y0

T , y
1
T ) on an appropriate space, we wonder if we can find a control function

h = h(t) such that the solution of the linear problem

(4)

 ytt − yxx − yxxtt = 0, (x, t) ∈ (0, 1)× (0, T ),
y(0, t) = 0, y(1, t) = h(t), t ∈ (0, T ),
y(x, 0) = y0(x), yt(x, 0) = y1(x), x ∈ (0, 1),

satisfies y(T ) = y0
T and yt(T ) = y1

T .

2.1. Well-posedness. We first look at the well-posedness of the homogeneous
improved Boussinesq problem on a bounded domain

(5)

 ytt − yxx − yxxtt = 0, (x, t) ∈ (0, 1)× (0, T ),
y(0, t) = y(1, t) = 0, t ∈ (0, T ),
y(x, 0) = y0(x), yt(x, 0) = y1(x), x ∈ (0, 1).
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CONTROL OF THE IMPROVED BOUSSINESQ EQUATION 3037

The well-posedness of this problem has already been studied by Zhijian in [20]. He
proved that (5) with a nonlinear term (y2)xx is well posed, locally in time, for (y0, y1) ∈
(H2(0, 1)∩H1

0 (0, 1))2 and that the solution belongs to C2([0, T0), H2(0, 1)∩H1
0 (0, 1)).

We will establish this kind of result by using spectral methods for the linear equa-
tion (5).

We can rewrite the homogeneous system (5) as

(6) ytt +Ay = 0,

where, for D(A) = H2(0, 1)∩H1
0 (0, 1), we define the operator A : D(A) ⊂ L2(0, 1) −→

L2(0, 1) by means of
A : w 7−→ −(I − ∂xx)−1∂xxw.

Proposition 1. There exists an orthonormal basis of L2(0, 1) formed by eigen-
functions {fk}k∈N∗ of the operator A. Moreover, this family is given by fk(x) =√

2 sin(kπx), and the corresponding eigenvalues are λk = k2π2

k2π2+1 for any k ∈ N∗.

Proof. Let λ ∈ C and y ∈ H2(0, 1) ∩H1
0 (0, 1) such that Ay = λy; then

(7)

{
yxx = −λ(y − yxx),
y(0) = y(1) = 0.

From this, we see that

(8)

{
yxx = λ

λ−1y,

y(0) = y(1) = 0,

and then the eigenvalues are λk = k2π2

k2π2+1 , and the corresponding eigenfunctions are

fk(x) =
√

2 sin(kπx) for k ∈ N∗.
Remark 2. We can easily remark that the eigenvalues λk ∈ R+ are simple and in

addition that limk→+∞ λk = 1. Thus, the spectrum of A admits a finite limit point.

By using the spectral decomposition of A and the asymptotic behavior of λk, we can
write the solutions of system (5) in the space Hs(0, 1) defined in the following classical
way for any s ≥ 0:

Hs(0, 1) =

∑
k≥1

akfk(x)
/∑
k≥1

k2s|ak|2 <∞

 .

We can remark that
• for s ≤ 1/2, Hs(0, 1) = Hs(0, 1),
• for 1/2 < s ≤ 3/2, Hs(0, 1) = Hs

0(0, 1),
• and for 3/2 < s ≤ 2, Hs(0, 1) = Hs(0, 1) ∩H1

0 (0, 1),
where Hs(0, 1) and Hs

0(0, 1) are the usual Sobolev spaces. Thus, we explicitly obtain
the following.

Proposition 3. Let s ≥ 0. For every (y0, y1) ∈ Hs(0, 1)2 the solution y of (5)
belongs to C1([0,+∞[,Hs(0, 1)) and can be written as

(9) y(x, t) =
∑
k≥1

(
ak cos

(√
λkt
)

+
bk√
λk

sin
(√

λkt
))

fk(x),

where y0 =
∑
k≥1 akfk and y1 =

∑
k≥1 bkfk.
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3038 EDUARDO CERPA AND EMMANUELLE CRÉPEAU

Remark 4. From the cosine and sine functions, we see that there is no gain of
regularity for the linear improved Boussinesq equation. Moreover, from the asymp-
totic behavior of eigenvalues λk, we see the fact that the position y and the velocity
yt have the same regularity.

Remark 5. As we will see later, we need to have a solution y of the homogeneous
problem such that the trace yx(1, t) exists as a function. From the previous proposi-
tion, we see that if s > 3/2, then we obtain a solution such that the desired trace is
a function. Another way to see that is through the simple computation

|yx(1, t)| ≤ 2π
√

2
∑
n≥1

(n|an|+ n|bn|)

≤ 2π
√

2

∑
n≥1

n2−2s

1/2∑
n≥1

n2s|an|2
1/2

+2π
√

2

∑
n≥1

n2−2s

1/2∑
n≥1

n2s|bn|2
1/2

,

which gives the desired result when we are in regularity Hs(0, 1) with s > 3/2.

We are concerned now with the initial boundary value problem (4).

Proposition 6. Let y0, y1 ∈ L2(0, 1), and h ∈ H2(0, T ). Then, (4) has a unique
mild solution y in the space C1([0, T ], L2(0, 1)).

Proof. If y is the solution of (4), then ϕ(x, t) := y(x, t)− xh(t) is the solution of

(10)

 ϕtt − ϕxx − ϕxxtt = −xḧ, (x, t) ∈ (0, 1)× (0, T ),
ϕ(0, t) = ϕ(1, t) = 0, t ∈ (0, T ),

ϕ(x, 0) = y0 − xh(0), ϕt(x, 0) = y1 − xḣ(0), x ∈ (0, 1),

where ḣ and ḧ denote the first and second derivative in time of h, respectively.
By introducing v = ϕ and w = ϕt, we can write this equation as a first order

system as follows:

(11)


d

dt

(
v
w

)
=

(
0 I

(I − ∂xx)−1∂xx 0

)(
v
w

)
+

(
0

−ḧ(I − ∂xx)−1x

)
,

(
v(0)
w(0)

)
=

(
y0 − xh(0)

y1 − xḣ(0)

)
.

The forcing term belongs to L2(0, T ;Hs(0, 1)) for any 0 ≤ s < 1/2 (notice that
the function f(x) = x belongs to Hs(0, 1) for any s < 1/2). Thus, by using a
classical result, we obtain a well-posedness result for (11) giving a solution ϕ in
C1([0, T ], L2(0, 1)). Going back to y we obtain the desired result (see [9, page 13] for
a similar argument).

2.2. Lack of exact controllability. We want to study the exact controllabil-
ity of

(12)

 ytt − yxx − yxxtt = 0, (x, t) ∈ (0, 1)× (0, T ),
y(0, t) = 0, y(1, t) = h(t), t ∈ (0, T ),
y(x, 0) = y0(x), yt(x, 0) = y1(x), x ∈ (0, 1),

where h ∈ H2(0, T ) is the boundary control and y0, y1 ∈ L2(0, 1) are the initial data.
Let z be the solution of the adjoint problem of (12), which is given by

(13)

 ztt − zxx − zxxtt = 0, (x, t) ∈ (0, 1)× (0, T ),
z(0, t) = z(1, t) = 0, t ∈ (0, T ),
z(x, T ) = z0

T (x), zt(x, T ) = z1
T (x), x ∈ (0, 1),
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CONTROL OF THE IMPROVED BOUSSINESQ EQUATION 3039

for z0
T , z

1
T ∈ H2∩H1

0 (0, 1) = H2(0, 1). We decompose the initial data of z in a Fourier
series,

z0
T =

∑
n≥1

ãnfn(x), z1
T = −

∑
n≥1

b̃nfn(x),

with
∑
n≥1(n4|ãn|2 + n4|b̃n|2) <∞, in order to write the solution of (13) as

z(x, t) =
∑
n≥1

(
ãn cos

(√
λn(T − t)

)
+

b̃n√
λn

sin
(√

λn(T − t)
))

fn(x).

Equivalently, in its complex form, this solution is given by

(14) z(x, t) =
∑
n≥1

(
c̃ne

i
√
λn(T−t) + d̃ne

−i
√
λn(T−t)

)
fn(x),

where

c̃n =
1

2

(
ãn −

ib̃n√
λn

)
and d̃n =

1

2

(
ãn +

ib̃n√
λn

)
.

We are now in a position to prove the following noncontrollability result.

Theorem 7. The control system (12) is not spectrally controllable in L2(0, 1).

Proof. We prove that no nontrivial finite combination of eigenfunctions {fn}n≥1

can be driven to zero in finite time. Let {an}n≥1 and {bn}n≥1 be two sequences of
real numbers such that there exists N ∈ N with an = bn = 0 for all n > N .

Suppose that the system (12) is spectrally controllable. Then, there exists a
boundary control h ∈ H2(0, T ) such that the solution of (12) with initial data

y0 =
∑
n≥1

anfn, y
1 =

∑
n≥1

bnfn

satisfies y(T ) = yt(T ) = 0.
We multiply (12) by z and integrate in space and time over (0, 1)× (0, T ). Thus,

we obtain∫ 1

0

[
y1 (z(x, 0)−zxx(x, 0))−y0 (zt(x, 0)−zxxt(x, 0))

]
dx=

∫ T

0

(
h(t) + ḧ(t)

)
zx(1, t)dt

for any solution z of (13). Using this equation with appropriate trajectories, first with

z(x, t) = ei
√
λn(T−t)fn(x) and next with z(x, t) = e−i

√
λn(T−t)fn(x), we have that the

control h is the solution of the moment problem composed, for any n ≥ 1, of the
following equations:

(15)


(1 + n2π2)

(
i
√
λnan + bn

)
=
√

2(nπ)(−1)n
∫ T

0

(
h(t) + ḧ(t)

)
e−i
√
λntdt,

(1 + n2π2)
(
− i
√
λnan + bn

)
=
√

2(nπ)(−1)n
∫ T

0

(
h(t) + ḧ(t)

)
ei
√
λntdt.

We proceed as in [14] and [15]. Let us define the complex function

F (z) :=

∫ T

0

(h(t) + ḧ(t))eiztdt.
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Due to the Paley–Wiener theorem, F is an entire function, and it satisfies F (±
√
λn) =

0 for all n > N . Because of the asymptotic behavior of the eigenvalues (
√
λn → 1 as

n→∞), we see that F vanishes on a set with a finite accumulation point. Therefore,
we conclude that F ≡ 0. From (15), we easily obtain that an = bn = 0 for each n ≥ 1.
That means that the trivial state is the only one which can be steered to zero.

Remark 8. System (12) being not spectrally controllable, we consequently know
that (12) is neither exact nor null controllable. This is clear from the proof. Moreover,
all the computations in this proof involve a finite number of modes. In this way, this
applies for any regularity framework Hs(0, 1) where the control system is well posed.

2.3. Approximate controllability. In spite of the lack of exact controllability
from the boundary, we now prove that system (12) is approximately controllable. This
property is equivalent to a unique continuation property for the adjoint system.

Theorem 9. System (12) is approximately controllable in L2(0, 1) for any time
T > 0.

Proof. Thanks to the linearity of system (12), we only have to prove the ap-
proximate controllability from the initial state (y0 = 0, y1 = 0). Let us define the
map

Λ : h ∈ H2(0, T ) 7−→ (y(T ), yt(T )) ∈ L2(0, 1)2.

We have to prove that the range of this linear operator Λ is dense in L2(0, 1)2. Let
(w0

T , w
1
T ) ∈ L2(0, 1)2 such that

(16) −
∫ 1

0

yt(T )w0
T dx+

∫ 1

0

y(T )w1
T dx = 0.

Let us define z0
T , z

1
T ∈ H2 ∩H1

0 (0, 1) such that

z0
T − ∂xxz0

T = w0
T and z1

T − ∂xxz1
T = w1

T

and consider z as the solution of (13) with initial condition (at t = T ) given by z0
T , z

1
T .

We multiply (12) by z and integrate in space and time over (0, 1)× (0, T ). Thus,
we obtain ∫ T

0

(
h(t) + ḧ(t)

)
zx(1, t)dt = 0,

where we have used (16) and the fact that (y0 = y1 = 0). We prove now that we must
have z = 0. This would imply that z0

T = z1
T = 0 and consequently w0

T = w1
T = 0,

which ends the proof. Indeed, let us choose h(t) = ei
2πn
T t for n ∈ Z. Then,

0 =

∫ T

0

(h(t) + ḧ(t))zx(1, t)dt =

(
1−

(
2πn

T

)2
)∫ T

0

ei
2πn
T tzx(1, t)dt,

and consequently, the integral term in the right-hand side must be zero for any n 6=
± T

2π . Thus, we see the following:

• If T
2π /∈ Z, then zx(1, ·) is orthogonal to any function ei

2πn
T t. In conclusion,

we get zx(1, ·) = 0.

• If T
2π ∈ Z, then zx(1, ·) is orthogonal to any function ei

2πn
T t except at most

when n = ± T
2π . In conclusion, we get zx(1, ·) ∈ Span{eit, e−it}.

In both cases, we can write that there exist α and β ∈ C such that we have the
expression zx(1, t) = αeit + βe−it. In this way, we get
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zx(1, t) =
∑
n≥1

[
c̃ne

i
√
λn(T−t) + d̃ne

−i
√
λn(T−t)

]√
2(nπ)(−1)n = αeit + βe−it,

where we have used (14) with the corresponding coefficients. From this, we see that

(17)
∑
n≥1

[
c̃ne

i
√
λn(T−t) + d̃ne

−i
√
λn(T−t)

]√
2(nπ)(−1)n − αeit − βe−it = 0

for all t ∈ (0, T ). As this function is analytic, it vanishes for any t ∈ R.

By using (17) and noting that
√
λm 6= 1 for any m ≥ 1, we obtain the following:

0 = lim
S→+∞

1

2S

∫ S

−S

(∑
n≥1

[
c̃ne

i
√
λn(T−t) + d̃ne

−i
√
λn(T−t)

]√
2(nπ)(−1)n

− αeit − βe−it
)
ei
√
λmtdt = (−1)m

√
2(mπ)c̃me

i
√
λmT

and

0 = lim
S→+∞

1

2S

∫ S

−S

(∑
n≥1

[
c̃ne

i
√
λn(T−t) + d̃ne

−i
√
λn(T−t)

]√
2(nπ)(−1)n

− αeit − βe−it
)
e−i
√
λmtdt = (−1)m

√
2(mπ)d̃me

−i
√
λmT .

In consequence, for any m ≥ 1, we obtain that c̃m = d̃m = 0. This fact implies
that z = 0, which ends the proof of Theorem 9.

3. Moving distributed control on a periodic domain. The previous results
of nonexact controllability on a bounded domain can be used to show that the exact
controllability of the linearized improved Boussinesq equation with a distributed con-
trol supported in a fixed subdomain ω 6= T = R/(2πZ) fails. This leads us to study
another type of control whose support moves on the torus T = R/(2πZ). This moving
control is supposed to be supported in a set that moves at a constant velocity c. In
this section, we look at the distributed control problem of the improved Boussinesq
equation posed on the torus T. Namely, given a time T > 0, an initial condition
(y0, y1), and a target (y0

T , y
1
T ) on appropriate spaces, we wonder whether we can find

a control function h = h(x, t) such that the solution of the problem

(18)

{
ytt − yxx − yxxtt = (y2)xx + b(x+ ct)h(x, t), x ∈ T, t > 0,
y(x, 0) = y0(x), yt(x, 0) = y1(x), x ∈ T,

satisfies y(T ) = y0
T and yt(T ) = y1

T , where b = b(x) is a given nonzero smooth
function. In order to deal with the control problem, we first linearize it around the
origin to obtain

(19)

{
ytt − yxx − yxxtt = b(x+ ct)h(x, t), x ∈ T, t > 0,
y(x, 0) = y0(x), yt(x, 0) = y1(x), x ∈ T.

We study this linear control system, and then we come back to the nonlinear one by
means of a fixed point argument.
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3.1. Well-posedness. We first study the well-posedness of (19) without control,

(20)

{
ytt − yxxtt − yxx = 0, x ∈ T, t > 0,
y(x, 0) = y0(x), yt(x, 0) = y1(x), x ∈ T.

For s ≥ 0, Hs(T) is the usual Sobolev space on the torus T, namely,

Hs(T) =
{
u : T→ R

/
‖u‖Hs(T) := ‖(1− ∂2

x)
s
2u‖L2(T) <∞

}
.

As in the previous section, we easily obtain the following propositions.

Proposition 10. Let s ≥ 0. For every (y0, y1) ∈ Hs(T)2 the solution y of (20)
belongs to C1([0,+∞[, Hs(T)) and can be decomposed as

y(x, t) = (α0+β0t)+
∑
k∈Z∗

(
αk cos

(√
k2

k2 + 1
t

)
+ βk

√
k2 + 1

k2
sin

(√
k2

k2 + 1
t

))
eikx,

where y0 =
∑
k∈Z αke

ikx and y1 =
∑
k∈Z βke

ikx. Then for any T > 0, there exists
C0 > 0 such that

‖y‖C1([0,T ],Hs(T)) ≤ C0

(
‖y0‖Hs(T) + ‖y1‖Hs(T)

)
.

Proposition 11. Let T > 0, let (y0, y1) ∈ Hs(T)2 with s ≥ 0, and let F ∈
L1(0, T ;Hs−2(T)). Then the solution of the linear system

ytt − yxxtt − yxx = F

with y(., 0) = y0 and yt(., 0) = y1 satisfies y ∈ C1([0, T ], Hs(T)), and the solution
depends continuously on data, i.e., there exists C2 > 0 such that

‖y‖C1([0,T ],Hs(T)) ≤ C2

(
‖y0‖Hs(T) + ‖y1‖Hs(T) + ‖F‖L1(0,T ;Hs−2(T)

)
.

3.2. Gap condition. Let us prove that if we choose c ∈ R sufficiently large,

the terms kc±
√

k2

k2+1 are all different and have an asymptotical gap. This will be

useful to study the exact controllability wanted. We define two families of sequences
for k ∈ Z,

λ+
k =

(
ck +

|k|√
1 + k2

)
and λ−k =

(
ck − |k|√

1 + k2

)
.

We can easily prove the following lemma concerning the asymptotical gap in these
eigenvalues’ distribution.

Lemma 12. Let us denote by ∆ the asymptotical gap between the eigenvalues. If
2
c /∈ Z, then

∆ =
∣∣∣c∣∣∣.dist(

2

c
,Z).

Proof. Let k, k′ ∈ N. We easily get that

λ+
k′ − λ

+
k = λ−−k − λ

−
−k′ = c(k′ − k)− 1

2k′2
+

1

2k2
+ o
( 1

k2

)
+ o
( 1

k′2

)
,

λ−k′ − λ
+
k = c

(
k′ − k − 2

c

)
+

1

2k′2
+

1

2k2
+ o
( 1

k2

)
+ o
( 1

k′2

)
.

Thus the asymptotical gap is |c|.dist( 2
c ,Z).

Remark 13. For instance, if c ≥ 4, then we have an asymptotical gap ∆ = 2.
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3.3. Exact controllability of the linear system. We look at the following
internal control problem:

(21)

{
ytt − yxxtt − yxx = b(x+ ct)h(x, t), x ∈ T, t > 0,
y(x, 0) = y0(x), yt(x, 0) = y1(x), x ∈ T.

We want to prove the following result, where ∆ > 0 is defined in Lemma 12.

Theorem 14. Let s ≥ 2 and c be such that |c| > 2. Let b = b(x) ∈ C∞(T) be
such that {x ∈ T, b(x) 6= 0} 6= ∅. Then, for all T > 2π

∆ and all (y0, y1), (y0
T , y

1
T ) ∈

Hs(T) × Hs(T), there exists a control h ∈ L2(0, T ;Hs−2(T)) such that the linear
problem (21) admits a unique solution y ∈ C1([0, T ], Hs(T)) such that y(x, T ) = y0

T (x)
and yt(x, T ) = y1

T (x). Furthermore, there exists C1 > 0 such that

‖h‖L2(0,T,Hs−2(T)) ≤ C1

(
‖(y0, y1)‖Hs(T)2 + ‖(y0

T , y
1
T )‖Hs(T)2

)
.

Remark 15. The condition |c| > 2 is useful in two ways: to be sure the asymptotic
gap ∆ is positive ( 2

c /∈ Z) and to avoid the existence of different k,m such that

ck +

√
k2

k2 + 1
= cm−

√
m2

m2 + 1
.

The latter is needed in order to solve the moment problem with no additional com-
patibility conditions on the initial and final data.

Proof. The adjoint problem is written as follows:

(22) ϕtt − ϕxxtt − ϕxx = 0, x ∈ T, t > 0.

We easily remark that if y is a solution of the direct problem (21) with h = 0, then
ϕ(x, t) = y(2π − x, T − t) is a solution of the adjoint problem (22).

Let us multiply (21) by ϕ̄, where ϕ is a solution of (22), and integrate by parts
on [0, T ]× T. Then, we obtain

(23)

∫
T

[
yt(ϕ̄− ϕ̄xx)− y(ϕ̄t − ϕ̄xxt)

]∣∣∣T
t=0

dx =

∫ T

0

∫
T
h(x, t)b(x+ ct)ϕ̄(x, t)dxdt.

We take, for k ∈ Z, ϕ̄+(x, t) = e
i
√

k2

k2+1
(T−t)

e−ikx and ϕ̄−(x, t) = e
−i
√

k2

k2+1
(T−t)

e−ikx.
Thus, (23) becomes

(1 + k2)

(〈
yt(T )− e±i

√
k2

k2+1
T
yt(0), eikx

〉
± i
√

k2

k2 + 1

〈
y(T )− e±i

√
k2

k2+1
T
y(0), eikx

〉)

=

∫ T

0

∫
T
h(x, t)b(x+ ct)e

±i
√

k2

k2+1
(T−t)

e−ikxdxdt,

(24)

where 〈f, eikx〉 stands for the coordinate fk in the Fourier decomposition f =
∑
k∈Z

fke
ikx.
Taking ϕ = t in (23), we obtain

(25) T

∫
T
yt(T ) dx−

∫
T
y(T ) dx+

∫
T
y(0) dx =

∫ T

0

∫
T
h(x, t)b(x+ ct)tdxdt.
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By a simple change of variables we can rewrite the right-hand side of (24) and
(25) as follows:∫ T

0

∫
T
h(x, t)b(x+ ct)e

±i
√

k2

k2+1
(T−t)

e−ikxdxdt

=

∫ T

0

∫
T
h(x− ct, t)b(x)e

±i
√

k2

k2+1
(T−t)

e−ik(x−ct) dxdt,∫ T

0

∫
T
h(x, t)b(x+ ct)t dxdt =

∫ T

0

∫
T
h(x− ct, t)b(x)t dxdt.

Let us define h̃(x, t) = h(x− ct, t). Then the moment problem consists in finding
a control h̃ such that for all k ∈ Z,

(1 + k2)

(〈
e
∓i
√

k2

k2+1
T
yt(T )− yt(0), eikx

〉
± i
√

k2

k2 + 1

〈
e
∓i
√

k2

k2+1
T
y(T )− y(0), eikx

〉)

=

∫ T

0

∫
T
h̃(x, t)b(x)e

i
(
kc∓

√
k2

k2+1

)
t
e−ikxdxdt

(26)

and

T

∫
T
yt(T ) dx−

∫
T
y(T ) dx+

∫
T
y(0) dx =

∫ T

0

∫
T
h̃(x, t)b(x)t dxdt.(27)

Because of the asymptotical gap ∆ and the fact that the time exponential functions
are all different, we can apply standard results on complex exponential functions to
prove, for any T > 2π

∆ , the existence of a function h ∈ L2(0, T,Hs−2(T)) solving

(26)–(27). Indeed, we choose {q0, q̃0} ∪ {q±k }k∈Z∗ ⊂ L2(0, T ) as a biorthogonal family
to the set

S = {1, t} ∪
{
e
i(kc∓

√
k2

k2+1
)t
}
k∈Z∗

.

Remark 16. The existence of this biorthogonal family can be established as ex-
plained in [17, section 2]. The set S is not complete in L2(0, T ) under the condition

lim sup
y→∞

lim sup
x→∞

Λ(x+y)−Λ(x)
y <

T

2π
,

where Λ(x) denotes the number of (kc∓
√

k2

k2+1 ) which are less than x. This condition

holds given the structure of {kc∓
√

k2

k2+1}k∈Z∗ and our choice of T . The existence of

the biorthogonal family is deduced from the lack of completeness. In particular, to
deal with the function t, one can use that for ω > 0,

lim
ω→0+

eiωt − e−iωt

2iω
= t uniformly in [0, T ].

We follow [16] and look for a control in the form

h̃(x, t) = b(x)

f0q0(t) + f̃0q̃0(t) +
∑
j∈Z∗

(
f+
j q

+
j (t) + f−j q

−
j (t)

)
eijx

 ,
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where f0, f̃0, f
±
j are scalars chosen to satisfy the moment problem (26)–(27). Thus,

we obtain, for k ∈ Z∗,

(28) f+
k =

(1 + k2)∫
T b

2(x)dx

(〈
e
−i
√

k2

k2+1
T
yt(T )− yt(0), eikx

〉
+ i

√
k2

k2 + 1

〈
e
−i
√

k2

k2+1
T
y(T )− y(0), eikx

〉)
,

(29) f−k =
(1 + k2)∫
T b

2(x)dx

(〈
e
i
√

k2

k2+1
T
yt(T )− yt(0), eikx

〉
− i
√

k2

k2 + 1

〈
e
i
√

k2

k2+1
T
y(T )− y(0), eikx

〉)
,

and

f0 =
1∫

T b
2(x)dx

(∫
T
yt(T ) dx−

∫
T
yt(0) dx

)
,(30)

f̃0 =
1∫

T b
2(x)dx

(
T

∫
T
yt(T ) dx−

∫
T
y(T ) dx+

∫
T
y(0) dx

)
,(31)

where
∫
T b

2(x)dx 6= 0 by hypothesis. Furthermore, from (28)–(31) we obtain the
continuity of the control with respect to data. More explicitly, we obtain the existence
of a constant C > 0 such that

‖h̃‖2L2(0,T ;Hs−2(T))

=

∫ T

0

‖b(x)

f0q0(t) + f̃0q̃0(t) +
∑
j∈Z∗

(
f+
j q

+
j (t) + f−j q

−
j (t)

)
eijx

‖2Hs−2(T)dt

≤ C
∫ T

0

|f0q0(t)|2 + |f̃0q̃0(t)|2 +
∑
j∈Z∗

(1 + j2)s−2|f+
j q

+
j (t) + f−j q

−
j (t)|2

 dt

≤ 2C

|f0|2 + |f̃0|2 +
∑
j∈Z∗

(1 + j2)s−2(|f+
j |

2 + |f−j |
2)


≤ 2C

(
‖y0‖2Hs(T) + ‖y1‖2Hs(T) + ‖y0

T ‖2Hs(T) + ‖y1
T ‖2Hs(T)

)
.

(32)

Then, h(x, t) = h̃(x+ ct, t) is the desired control function that drives the system from
(y0, y1) to (y0

T , y
1
T ), which concludes the proof.

3.4. Local exact controllability of the nonlinear system. We follow the
proof of the local exact controllability of the Boussinesq equation given in [6]. We
decompose the solution of the nonlinear problem,

(33)

{
ytt − yxx − yxxtt = (y2)xx + b(x+ ct)h(x, t), x ∈ T, t > 0,
y(x, 0) = y0(x), yt(x, 0) = y1(x), x ∈ T,
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in the following way: y = α + β + γ, where α is the solution of the linear problem
with initial data and with no control,

(34)

{
αtt − αxx − αxxtt = 0, x ∈ T, t > 0,
α(x, 0) = y0(x), αt(x, 0) = y1(x), x ∈ T,

β is the solution of the linear problem with control but with null initial data,

(35)

{
βtt − βxx − βxxtt = b(x+ ct)h(x, t), x ∈ T, t > 0,
β(x, 0) = 0, βt(x, 0) = 0, x ∈ T,

and γ is the solution of the linear problem with a second member term F ,

(36)

{
γtt − γxx − γxxtt = F, x ∈ T, t > 0,
γ(x, 0) = 0, γt(x, 0) = 0, x ∈ T.

(Later, the source term F will be taken as the nonlinearity (y2)xx.)
We study the nonlinear problem in the following regularity framework:

(y0, y1) ∈ H2(T)2, h ∈ L2(0, T, L2(T)), F ∈ L1(0, T ;L2(T)), and b ∈ C∞(T),

where b is such that {x ∈ T, b(x) 6= 0} 6= ∅.
Let us consider the following maps, which are well defined, linear, and continuous

by Propositions 10 and 11:
• the initial data-to-solution map,

ψ0 : (y0, y1) ∈ H2(T)2 7−→ α ∈ C1([0, T ], H2(T)),

where α is the solution of (34);
• the control-to-solution map,

ψ1 : h ∈ L2(0, T, L2(T)) 7−→ β ∈ C1([0, T ], H2(T)),

where β is the solution of (35);
• the source term-to-solution map,

ψ2 : F ∈ L1(0, T ;L2(T)) 7−→ γ ∈ C1([0, T ], H2(T)),

where γ is the solution of (36).
In order to deal with the nonlinearity, we need the following proposition.

Proposition 17 ([6]). The map

φ ∈ L2(0, T,H2(T)) 7−→ (φ2)xx ∈ L1(0, T, L2(T))

is well defined and continuous. We have the existence of K > 0 such that

‖(φ2)xx − (ψ2)xx‖L1(0,T,L2(T))

≤ K
(
‖φ‖L2(0,T,H2(T)) + ‖ψ‖L2(0,T,H2(T))

)
‖φ− ψ‖L2(0,T,H2(T)).

Proof. This proof is exactly the same as in [6, Proposition 6], where the result is
obtained in the spatial domain [0, L].
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Thanks to (32), we can define a continuous map

Γ : (y0
T , y

1
T ) ∈ H2(T)2 7−→ h ∈ L2(0, T, L2(T))

such that the solution β ∈ C1([0, T ], H2(T)) of (35) satisfies (β(T ), βt(T )) = (y0
T , y

1
T ).

Let us define the following map:

Π : y ∈ C1([0, T ], H2(T)) 7→ Π(y) ∈ C1([0, T ], H2(T)),

where

Π(y) = ψ0(y0, y1) + ψ2((y2)xx)

+ψ1◦Γ
(
(y0
T , y

1
T )−

(
ψ0(y0, y1)(T ), ψ0t(y

0, y1)(T )
)
−
(
ψ2((y2)xx)(T ), ψ2t((y

2)xx)(T )
))
.

We see that a fixed point of Π is a trajectory y = y(x, t) of (33) going from (y0, y1)
at time t = 0 to (y0

T , y
1
T ) at time t = T .

Let us apply the Banach fixed point theorem. We consider small data with ε > 0
to be fixed later:

‖(y0, y1)‖H2(T)2 ≤ ε, ‖(y0
T , y

1
T )‖H2(T)2 ≤ ε.

We have to find R > 0 and D ∈ (0, 1) such that the following are true:
1. Π(BR) ⊂ BR, where BR is the closed ball,

BR =
{
v ∈ C1([0, T ], H2(T))

/
‖v‖ ≤ R

}
.

(In this section, ‖ · ‖ stands for the norm in C1([0, T ], H2(T)).)

2. ‖Π(v)−Π(w)‖ ≤ D‖v − w‖.
Taking in mind the constants C0, C2,K,C1 in Propositions 10, 11, and 17 and Theo-
rem 14, respectively, we obtain, for v ∈ BR,

‖Π(v)‖ ≤ C0ε+ C2C1(ε+ C0ε+ C2KR
2) + C2KR

2.

Thus, we obtain the first condition to satisfy

(37) C0ε+ C2C1(ε+ C0ε+ C2KR
2) + C2KR

2 ≤ R.

On the other hand, for v, w ∈ BR,

Π(v)−Π(w)

= ψ1 ◦ Γ
(
ψ2((w2)xx−(v2)xx)(T ), ψ2t((w

2)xx−(v2)xx)(T )
)
−ψ2((w2)xx−(v2)xx),

and then

‖Π(v)−Π(w)‖ ≤ 2C2C1C2KR‖v − w‖+ 2C2KR‖v − w‖ ≤ 2C̃R‖v − w‖.

In this way, we obtain the second condition to satisfy

C̃R < 1/2.(38)

By chosing ε, R > 0 small enough in order to satisfy (37) and (38), we can apply
the Banach fixed point theorem to prove the following result.
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Theorem 18. Let c be such that |c| > 2. Let b = b(x) ∈ C∞(T) be such that
{x ∈ T, b(x) 6= 0} 6= ∅. Then, for all T > 2π

∆ , there exists ε > 0 such that for any
(y0, y1), (y0

T , y
1
T ) ∈ H2(T)2 satisfying

‖(y0, y1)‖H2(T)2 ≤ ε, ‖(y0
T , y

1
T )‖H2(T)2 ≤ ε,

there exists a control h ∈ L2(0, T, L2(T)) such that the problem (33) admits a unique
solution y ∈ C1([0, T ], H2(T)) such that

y(x, T ) = y0
T (x) and yt(x, T ) = y1

T (x).

4. Conclusion. In this paper we have studied several controllability properties
for the improved Boussinesq equation, posed either on a bounded interval or on the
torus. If the control acts on the boundary or is distributed on a fixed subdomain,
some nonexact controllability results appear for the linearized equation due to the
existence of an accumulation point in the spectrum of the underlying operator. In
order to obtain exact controllability results for both linear and nonlinear equations,
we consider the case of a moving control. Here, we require the speed at which the
control domain moves to be large enough.

For this equation, a natural open problem appears: can we stabilize the system?
On a bounded domain with either homogeneous Dirichlet boundary conditions or
periodic boundary conditions, the solution of

ytt − yxxtt − yxx = 0

conserves the following energy:

E(t) =
1

2

∫
{|yt(t, x)|2 + |ytx(t, x)|2 + |yx(t, x)|2} dx.

Thus, we wonder what kind of internal or boundary damping mechanisms stabilize
the system. In the internal control case, some terms, such as yt and −yxxt, should
help to get a decreasing energy. See [19], where the same kind of problems are studied
for the stabilization of the BBM equation.
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[1] J. Boussinesq, Théorie des ondes et des remous qui se propagent le long d’un canal rectangu-
laire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensible-
ment pareilles de la surface au fond, J. Math. Pures Appl. (2), 17 (1872), pp. 55–108.

[2] C. Castro, Exact controllability of the 1-D wave equation from a moving interior point, ESAIM
Control Optim. Calc. Var., 19 (2013), pp. 301–316, https://doi.org/10.1051/cocv/2012009.
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