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Abstract. In this article, we study the boundary controllability of the linear
Kuramoto-Sivashinsky equation on a bounded interval. The control acts on the
first spatial derivative at the left endpoint. First, we prove that this control
system is null controllable. It is done using a spectral analysis and the method
of moments. Then, we introduce a boundary feedback law stabilizing to zero
the solution of the closed-loop system.

1. Introduction and main results. The Kuramoto-Sivashinsky (KS) equation
reads as

yt + yxxxx + λyxx + yyx = 0, (1)

where the real number λ > 0 is called the “anti-diffusion” parameter. This equation
was derived independently by Kuramoto et al. in [17, 18, 16] as a model for phase
turbulence in reaction-diffusion systems and by Sivashinsky in [25] as a model for
plane flame propagation, describing the combined influence of diffusion and thermal
conduction of the gas on stability of a plane flame front. This nonlinear partial
differential equation describes incipient instabilities in a variety of physical and
chemical systems (see, for instance, [5], [19] and [13]).

From a mathematical point of view, well-posedness and dynamical properties of
KS equations have a huge literature since the pioneer articles [23, 24, 12].

We are interested in control properties of the KS equation. In this direction,
one finds the papers [1, 6] by Christofides and Armaou where the stabilization via
distributed scalar controls is achieved for the KS equation with periodic boundary
conditions, and [21] by Liu and Krstic where they proved the stability of (1) with
homogeneous Dirichlet boundary conditions for small values of the parameter λ.
Moreover, in [14] by Hu and Temam, a robust boundary control problem for KS is
formulated and solved.
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In this article, we address the problem of boundary controllability of the following
linear KS control system







yt + yxxxx + λyxx = 0,
y(t, 0) = 0, y(t, 1) = 0,
yx(t, 0) = u(t), yx(t, 1) = 0,

(2)

where the state is y(t, ·) : [0, 1] → R and the control is u(t) ∈ R. Given T > 0 and
a function y0, we wonder if there exists a control u = u(t) such that the solution
y = y(t, x) of (2) with initial condition y(0, x) = y0(x) satisfies y(T, x) = 0. If this
control exists for any function y0 lying in an appropriate space, we say that (2) is
null controllable in time T . We will see that (2) is null controllable if and only if λ
does not belong to the following countable set

N :=
{

π2(k2 + l2); k, l ∈ N, 1 ≤ k < l, k and l have the same parity
}

. (3)

To do that, we use a problem of moments approach and a spectral analysis of the
underlying spatial operator

A : w ∈ D(A) ⊂ L2(0, 1) 7−→ −w′′′′ − λw′′ ∈ L2(0, 1),
D(A) := H4(0, 1) ∩ H2

0 (0, 1).

When λ belongs to N , this approach is not possible. Indeed, for those values of λ,
the system (2) is not null controllable with controls acting only on the first spatial
derivatives at the end-points. Thus, we obtain the following result.

Theorem 1.1 (Null controllability). Let T > 0 and λ /∈ N . For any y0 ∈ L2(0, 1),
there exists u ∈ H1(0, T ) such that the solution y ∈ C([0, T ], L2(0, 1)) of (2) with
initial condition y(0, ·) = y0, satisfies y(T, ·) = 0.

Then, we wonder if we can steer the system asymptotically to zero with a feedback
control, i.e. we address the stabilization issue. It is known from [21] that if λ < 4π2,
then (2) is exponentially stable in L2(0, 1). On the other hand, if λ ≥ 4π2 the
stability fails. In fact, the operator A has a finite number of positive eigenvalues.
In order to stabilize this system, we design a finite-dimensional based feedback, as
in [6, 1] for the KS equation with periodic boundary conditions. Similar feedback
laws have been implemented for the heat and wave equation in [8, 9]. Thus, we
obtain the following result.

Theorem 1.2 (Stabilization). Let λ /∈ N . There exist a feedback operator K and
two constants C, ν > 0 such that for any y0 ∈ L2(0, 1), the solution of (2) with
control in the feedback form u(t) := K(y(t, ·)) satisfies

‖y(t, ·)‖L2(0,L) ≤ Ce−νt‖y0‖L2(0,L)

Remark 1. As we have said, in the critical case λ ∈ N , the linear system is not null
controllable anymore. It is due to the behavior of some eigenfunction of the operator
A. We will see that the space of non-controllable functions is finite-dimensional.
To obtain the null controllability of the linear system in these cases, we have to
add another control. While discussing this point later, we will see that controlling
yx(t, 0) and yx(t, 1) does not improve the situation in the critical cases. Unlike that,
the system becomes null controllable if we can act on y(t, 0) and yx(t, 0). This result
with two input controls has been proved in [20] for the case λ = 0.

Remark 2. To study the controllability of a nonlinear equation, a first approach
would be to use the controllability of the linearized system, and then to prove the
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property for the nonlinear equation by means of a fixed point theorem. Even if the
linearized control system is not null controllable (λ ∈ N ), it is not excluded that the
nonlinear system is null controllable. That is the situation for the Korteweg-de Vries
control system studied in [7, 3, 4], where some finite-dimensional subspaces of non-
controllable functions appear for the linear system. However, the nonlinearity gives
the controllability. In those papers, the analysis of the nonlinear system is based
on power series expansion of second and third order (a first order expansion gives
the linear system for which the controllability does not hold). A future research
direction could be to apply those tools for the KS equation in the critical cases.

2. Spectral analysis. It is not difficult to see that the self-adjoint operator A has
a compact resolvent. Hence the spectrum σ(A) of A consists only of eigenvalues.
Furthermore the eigenvalues of A, denoted by {σk}k∈N, form a discrete subset of
R, satisfying limk→∞ σk = −∞. The eigenfunctions, denoted by {φk}k∈N, form an
orthonormal basis of L2(0, 1). For the work to be done here, we need very detailed
informations about the asymptotic behavior of the eigen-elements of the operator
A. For any k ∈ N, we have







−λφ′′
k − φ′′′′

k = σkφk,
φk(0) = 0, φk(1) = 0,
φ′

k(0) = 0, φ′
k(1) = 0.

(4)

First at all, let us see that 4σk ≤ λ2 for any k ∈ N. To do that, we multiply (4) by
φk and integrate on (0, 1). By using ab ≤ (a2/λ + λb2/4), with a = ‖φ′′

k‖L2(0,1) and
b = ‖φk‖L2(0,1), we obtain

σk

∫ 1

0

|φk(x)|2 = −
∫ 1

0

|φ′′
k(x)|2 − λ

∫ 1

0

φ′′
k(x)φk(x) ≤ λ2

4

∫ 1

0

|φk(x)|2,

which gives us the upper bound for the eigenvalues.
As we shall see in the controllability section, the following lemma is crucial.

Lemma 2.1. Let N the subset of R defined in (3). For any λ /∈ N , the eigenfunc-
tions of A satisfy

φ′′
k(0) 6= 0, ∀k ∈ N. (5)

Moreover, if λ /∈ N , the eigenvalues are simple.

Proof. First, we look for the eigenfunctions. Let (φ, σ) satisfy






−λφ′′ − φ′′′′ = σφ,
φ(0) = 0, φ(1) = 0,
φ′(0) = 0, φ′(1) = 0.

(6)

We distinguish 3 cases corresponding to the sign of the eigenvalue.

Case 1: σ = 0. The solution of (6) is given by

φ = C1 − αC2x − C1 cos(αx) + C2 sin(αx)

with α =
√

λ and C1, C2 such that they satisfy

C1(1 − cos(α)) + C2(sin(α) − α) = 0, and C1 sin(α) + C2(cos(α) − 1) = 0.

These equations have a solution (C1, C2) 6= 0 if and only if α satisfies 2 cos(α) =
2−α sin(α). This is possible for instance when λ = 4n2π2 for some n ∈ N. Thus, φ
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is given by φ = C(1 − cos(αx)) with C any constant. We see that φ′′(0) = Cλ 6= 0.
The other possibility is if we have

cos(α) =
4 − α2

α2 + 4
, sin(α) =

4α

α2 + 4
,

and hence,

φ = C(α − 2αx − α cos(αx) + 2 sinαx).

We easily verify that φ′′(0) = Cα3 6= 0.

Case 2: σ < 0. This part is very similar to the spectral analysis developed in [10].
The solution of (6) is given by

φ = C1 cosh(α(x−1/2))+C2 sinh(α(x−1/2))+C3 cos(β(x−1/2))+C4 sin(β(x−1/2))

with

α =

√

−λ +
√

λ2 − 4σ

2
> 0, β =

√

λ +
√

λ2 − 4σ

2
> 0,

and Ci, i = 1, . . . , 4 such that the boundary conditions are verified. After some
computations, one gets two sequences of eigenvalues {σ1,n}n≥1 and {σ2,n}n≥1:

• {σ1,n}n≥1 corresponds to the negative solutions of

α sin(β/2) cosh(α/2) = β sinh(α/2) cos(β/2), (7)

and the eigenfunctions are

φ1,n = C

[

− sin(β/2)

sinh(α/2)
sinh(α(x − 1/2)) + sin(β(x − 1/2))

]

.

We get that φ′′
1,n(0) = C(α2 + β2) sin(β/2) for any n ∈ N, that is not zero

from (7).
• {σ2,n}n≥1 corresponds to the negative solutions of

− α sinh(α/2) cos(β/2) = β sin(β/2) cosh(α/2), (8)

and the eigenfunctions are

φ2,n = C

[

− cos(β/2)

cosh(α/2)
cosh(α(x − 1/2)) + cos(β(x − 1/2))

]

.

We get that φ′′
2,n(0) = −C(α2 + β2) cos(β/2) for any n ∈ N, that is not zero

from (8).

Case 3: σ > 0. In this part we will find some values of λ for which (5) does not hold.
The solution of (6) is given by

φ = C1 cos(α(x−1/2))+C2 sin(α(x−1/2))+C3 cos(β(x−1/2))+C4 sin(β(x−1/2))

with

α =

√

λ −
√

λ2 − 4σ

2
> 0, β =

√

λ +
√

λ2 − 4σ

2
> 0,

and Ci, i = 1, . . . , 4 such that the boundary conditions are verified. After some com-
putations, one gets two set of eigenvalues {σ̂1,n}m1

n=1 and {σ̂2,n}m2

n=1 with m1, m2 ∈ N:
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• {σ̂1,n}m1

n=1 corresponds to the positive solutions of

β cos(β/2) sin(α/2) = α cos(α/2) sin(β/2). (9)

Here, we have two possibilities. If sin(α/2) 6= 0, the eigenfunction is

φ̂1,n = C

[

− sin(β/2)

sin(α/2)
sin(α(x − 1/2)) + sin(β(x − 1/2))

]

.

By using (9), one can see that φ̂′′
1,n(0) = C(β2 − α2) sin(β/2) is not zero for

any n ∈ N. On the other hand, if sin(α/2) = 0, the eigenfunction is

φ̂1,n = C

[

−β cos(β/2)

α cos(α/2)
sin(α(x − 1/2)) + sin(β(x − 1/2))

]

.

From (9), we get that φ̂′′
2,n(0) = 0 if and only if

λ = π2((2p)2 + (2q)2)

with p, q ∈ N, 0 < p < q. In this case, σ̂1,n = 16π4p2q2.
• {σ̂2,n}m2

n=1 corresponds to the positive solutions of

β cos(α/2) sin(β/2) = α sin(α/2) cos(β/2). (10)

Here, we have again two possibilities. If cos(α/2) 6= 0, the eigenfunction is

φ̂2,n = C

[

− cos(β/2)

cos(α/2)
cos(α(x − 1/2)) + cos(β(x − 1/2))

]

.

By using (10), one can see that φ̂′′
2,n(0) = C(α2 − β2) cos(β/2) is not zero for

any n ∈ N. On the other hand, if cos(α/2) = 0, the eigenfunction is

φ̂2,n = C

[

−β sin(β/2)

α sin(α/2)
cos(α(x − 1/2)) + cos(β(x − 1/2))

]

.

We can see that φ̂′′
2,n(0) = 0 if and only if

λ = π2[(2p + 1)2 + (2q + 1)2]

with p, q ∈ N, 0 ≤ p < q. In this case we get σ̂2,n = π4(1 + 2p)2(1 + 2q)2.

In this way, we have obtained the set of values λ for which (5) holds.
Finally, let us prove the last statement in the lemma. Let ϕ1, ϕ2 two eigenfunc-

tions associated to the same eigenvalue σ. By defining w := ϕ′′
1 (0)ϕ2 −ϕ′′

2 (0)ϕ1, we
see that w satisfies







−λw′′ − w′′′′ = σw,
w(0) = 0, w(1) = 0,
w′(0) = 0, w′(1) = 0,

and w′′(0) = 0. Therefore, one concludes that w = 0, i.e. ϕ1 and ϕ2 are linearly
dependent, which ends the proof of the lemma.

Remark 3. From the previous lemma we see that for a fixed λ ∈ N , the subspace
formed by the eigenfunctions φ satisfying φ′′(0) = 0 is finite-dimensional. For
example, if λ = 20π2, this subspace is one-dimensional and is generated by the
eigenfunction

φ = 2 sin(2πx − π) + sin(4πx).

The associated eigenvalue is σ = 64π4.
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In order to prove an asymptotic behavior of the eigen-elements of A, we have to
focus in the case σ < 0 since we know that there are only a finite number of non-
negatives eigenvalues. From the proof of the previous lemma, in particular from (7)
and (8), one can see that the following result holds.

Lemma 2.2. There exists some real positive constants Di with i = 1, 2, 3 such that

(i) The real numbers {σk}k∈N have the asymptotic form

σk = −D1k
4 + O(k3) as k → ∞.

(ii) One has

lim
k→+∞

|φ′′
k(0)|
k2

= D2, lim
k→+∞

|φ′′′
k (0)|
k3

= D3.

3. Controllability.

3.1. Well-posedness. Let us first explain what we mean by a solution of the linear
KS control system. If y = y(t, x) is a solution of (2), then the function

w(t, x) = y(t, x) − (x3 − 2x2 + x)u(t)

satisfies














wt + wxxxx + λwxx = F (t, x),
w(t, 0) = 0, w(t, 1) = 0,
wx(t, 0) = 0, wx(t, 1) = 0,
w(0, x) = y0(x) − (x3 − 2x2 + x)u(0),

(11)

where
F (t, x) := −λ(6x − 4)u(t) − (x3 − 2x2 + x)u̇(t).

From section 2 we know that the operator A, whose domain is H4(0, 1) ∩ H2
0 (0, 1),

generates a strongly continuous semigroup in L2(0, 1). Thus, if the initial condition
(y0 − (x3 − 2x2 + x)u(0)) ∈ L2(0, 1) and F ∈ L1(0, T, L2(0, 1)), then (11) has a
unique solution (called mild solution) in the space C([0, T ], L2(0, 1)). Moreover, if
(y0 − (x3 − 2x2 + x)u(0)) ∈ H4(0, 1) ∩ H2

0 (0, 1) and F ∈ C1([0, T ], L2(0, 1)), then
(11) has a unique solution (called classical solution) in the space

C([0, T ], H4(0, 1) ∩ H2
0 (0, 1)) ∩ C1([0, T ], L2(0, 1)).

In this way we see that if y0 ∈ L2(0, 1) and u ∈ H1(0, T ), then there exists a
unique solution y ∈ C([0, T ], L2(0, 1)) of (2). It is important to note that for any
t ∈ [0, T ] we can speak of y(t, ·) as a function lying in L2(0, 1). Furthermore, using
the energy estimates developed in [14], we can see that we have in fact a more
regular solution

y ∈ C([0, T ], L2(0, 1)) ∩ L2(0, T, H2(0, 1)).

3.2. Null controllability. Given T > 0, the system (2) is said to be null control-
lable in a space H if for any state y0 ∈ H , one can find a control u such that the
solution y of (2) with initial data y0 satisfies y(T ) = 0. Let us give the following
characterization of the null-controllability property.

Lemma 3.1. The control system (2) is null controlable in time T if and only
if for any y0 ∈ L2(0, 1), there exists a function u ∈ H1(0, T ) such that for any
qT ∈ L2(0, 1)

∫ 1

0

y0(x)q(0, x)dx = −
∫ T

0

u(t)qxx(t, 0)dt (12)
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where q = q(t, x) is the solution of














−qt + λqxx + qxxxx = 0,
q(t, 0) = 0, q(t, 1) = 0,
qx(t, 0) = 0, qx(t, 1) = 0,
q(T, x) = qT (x).

(13)

Proof. Let qT ∈ L2(0, 1) and q = q(t, x) the solution of (13). Let us multiply (2) by
q and integrate by parts. We obtain

∫ 1

0

y0(x)q(0, x)dx −
∫ 1

0

y(T, x)qT (x)dx = −
∫ T

0

u(t)qxx(t, 0)dt. (14)

If (12) holds, then
∫ 1

0
y(T )qT dx = 0 for any qT ∈ L2(0, 1) and hence y(T ) = 0.

Thus the control u steers the system from y0 to zero. Reciprocally, if u steers the
system from y0 to zero, then from (14) we obtain (12).

Now, we use the basis of L2(0, 1) formed by the eigenfunctions of A. Any qT ∈
L2(0, 1) can be written as

qT =
∑

k∈N

qkφk,

with {qk}k∈N ⊂ R satisfying
∑

k∈N
|qk|2 < ∞. Hence, the solution of (13) is given

by

q(t, x) =
∑

k∈N

qke(T−t)σkφk(x)

and we have
qxx(t, 0) =

∑

k∈N

qke(T−t)σkφ′′
k(0).

Using this fact in (12), on gets the following lemma.

Lemma 3.2. The control system (2) is null controlable in time T if and only if for
any

y0 =
∑

k∈N

yk
0φk ∈ L2(0, 1),

there exists a function f ∈ H1(0, T ) such that

φ′′
k(0)

∫ T

0

f(t)eσktdt = −yk
0eσkT , ∀k ∈ N. (15)

The control is given by u(t) := f(T − t).

Now, we consider λ /∈ N . Thus, the eigenfunctions φk satisfy φ′′
k(0) 6= 0 for any

k ∈ N and we can write (15) as follows.
∫ T

0

f(t)eσktdt = −yk
0eσkT

φ′′
k(0)

, ∀k ∈ N. (16)

Thanks to the behavior described in Lemma 2.2, to solve this moment problem, we
can apply the general theory developed in [11] by Fattorini and Russell (see also [2]
and [22]). Thus, by applying Corollary 3.2 in [11], one gets Theorem 1.1. Moreover,
the results in [11] prove that one obtains not only the null controllability of (2) in
the space L2(0, 1) with controls in H1(0, T ), but also in the spaces Hs(0, 1) for any
s ∈ R with controls u ∈ C∞([0, T ]) satisfying u(0) = u(T ) = 0. In this paper, we
will use the framework of the Theorem 1.1, i.e. states in L2(0, 1) and controls in
H1(0, T ).
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From (15), we clearly see that if φ′′
k(0) = 0 for some k ∈ N, then we could not

control the k-th coordinate of the solution. This is the case, as we saw in section 2,
if λ ∈ N . The system (2) is no longer null controllable since there exists a finite-
dimensional subspace of L2(0, 1) formed by some eigenfunctions satisfying φ′′

k(0) = 0
(see Remark 3). To overcome this difficulty, we can add another control. If we are
allowed to control the spatial derivative at both endpoints with controls u1 and u2,
i.e., we consider the system







yt + λyxx + yxxxx = 0,
y(t, 0) = 0, y(t, 1) = 0,
yx(t, 0) = u1(t), yx(t, 1) = u2(t),

(17)

one can prove that the null-controllability is equivalent to the existence of f1, f2

such that

φ′′
k(0)

∫ T

0

f1(t)e
σktdt + φ′′

k(1)

∫ T

0

f2(t)e
σktdt = −yk

0eσkT , ∀k ∈ N. (18)

Unfortunately, the same eigenfunctions φk for which φ′′
k(0) = 0, also satisfy φ′′

k(1) =
0. Thus, the second control does not give the null controllability. On the other
hand, if we add a control acting on y(t, 0) we do obtain the controllability. Indeed,
in this case the null controllability of the control system







yt + λyxx + yxxxx = 0,
y(t, 0) = u1(t), y(t, 1) = 0,
yx(t, 0) = u2(t), yx(1) = 0,

(19)

is equivalent to the existence of f1, f2 such that

φ′′
k(0)

∫ T

0

f2(t)e
σktdt + φ′′′

k (0)

∫ T

0

f1(t)e
σktdt = −yk

0eσkT , ∀k ∈ N. (20)

and this problem of moments can be solved in the same way as (15) since is not
possible that an eigenfunction φk satisfy both conditions φ′′

k(0) = 0 and φ′′′
k (0) = 0.

Indeed, the function φk is a non-trivial solution of a fourth-order ODE such that
φk(0) = φ′

k(0) = 0.

4. Stabilization. Since the eigenvalues of the operator A (see (4)) are real and
satisfy limk→∞ σk = −∞, we know that there could be at most a finite number
of non-negative eigenvalues. This unstable situation actually occurs when the real
parameter λ is larger or equals to 4π2 (see [21]). We also know that if λ < 4π2,
then the linear KS equation (and even the nonlinear KS equation) is asymptotically
stable in L2(0, 1). Here, we focus in the case λ ≥ 4π2.

In order to stabilize our linear control system, we are going to design a feedback
law moving the first unstable eigenvalues to the left without moving the others.
Thus, all the eigenvalues of the closed-loop system will be negative.

Now, in order to deal with an homogeneous Dirichlet problem instead of system
(2), we set, as previously,

w(t, x) = y(t, x) − (x3 − 2x2 + x)u(t).

This leads to the equation














wt = Aw + b(x)u̇(t) + a(x)u(t),
w(t, 0) = 0, w(t, 1) = 0,
wx(t, 0) = 0, wx(t, 1) = 0,
w(0, x) = y0(x) − b(x)u(0),

(21)



CONTROL AND STABILIZATION OF THE LINEAR KS EQUATION 99

where

b(x) = −x3 + 2x2 − x,
a(x) = −λ(6x − 4).

Any solution w = w(t, x) of (21) can be expanded as a series in the eigenfunctions
{φk}k∈N:

w(t, x) =

∞
∑

k=1

wk(t)φk(x).

Let n ∈ N be such that for any k > n, one has σk < −1. Our feedback is
based on a finite pole shifting procedure for the first n eigenvalues. Let Πn denote
the orthogonal projection onto the subspace spanned by the n first eigenfunctions
φ1, φ2, . . . , φn.

As we have

Πn(wt) =

n
∑

k=1

ẇk(t)φk(x), and Πn(Aw(t, x)) =

n
∑

k=1

σkwk(t)φk(x),

we can write
n

∑

k=1

ẇk(t)φk(x) =

n
∑

k=1

σkwk(t)φk(x) + Πn(b(x)u̇(t) + a(x)u(t)),

or shortly,

∀k ∈ {1, . . . , n}, ẇk(t) = σkwk(t) + bku̇(t) + aku(t), (22)

where

bk :=

∫ 1

0

(−x3 + 2x2 − x)φk(x)dx,

ak := −λ

∫ 1

0

(6x − 4)φk(x)dx.

The n equations in (22) form a finite-dimensional differential system controlled by
u and u̇. Set

α(t) = u̇(t),

and consider now u as being part of the state and α as the control. Then the former
differential system can be written in matrix-form as the finite-dimensional control
system

Ẋn(t) = AnXn(t) + Bnα(t), (23)

with

Xn(t) =











u(t)
w1(t)

...
wn(t)











, An =

















0 · · · · · · · · · 0
a1 σ1 0 · · · 0
... 0

. . .
. . .

...
...

...
. . .

. . . 0
an 0 · · · 0 σn

















, Bn =











1
b1

...
bn











Let us now prove the following result.

Proposition 1. The finite-dimensional control system (23) is controllable.
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Proof. Let us see that the Kalman condition is verified. Simple computations give

det(Bn, AnBn, . . . , An−1
n Bn) =

n
∏

k=1

(ak + σkbk)V dM(σ1, . . . , σn),

where V dM(σ1, . . . , σn) is a Van der Monde determinant whose value is
∏

k>j

(σk − σj),

that is not zero since all the eigenvalues are simple. Now, let us compute by using
integrations by parts,

ak + σkbk = λ

∫ 1

0

b′′(x)φk(x)dx + σk

∫ 1

0

b(x)φk(x)dx

=

∫ 1

0

b(x)(λφ′′
k(x) + σkφk(x))dx

= −
∫ 1

0

b(x)φ′′′′
k (x)dx = b′(x)φ′′

k

∣

∣

1

x=0
= φ′′

k(0).

From Lemma 2.1 we see that the Kalman condition holds. Hence, the system (23)
is controllable.

Thus, this system can be stabilizable by the pole shifting method (see [15]),
obtaining the following corollary.

Corollary 1. There exists a vector Kn = (K0
n, K1

n, . . . , Kn
n ) such that the matrix

An + BnKn admits n + 1 eigenvalues {µk}n
k=0 satisfying for any k ∈ {0, . . . , n},

Re(µk) < −1.

If we take u′(t) = KnXn(t) such that u(0) = 0 in (21), we get the closed-loop
system























u′ = KnXn,
wt = Aw + b(x)KnXn + a(x)u,
w(t, 0) = 0, w(t, 1) = 0,
wx(t, 0) = 0, wx(t, 1) = 0,
w(0, x) = y0(x),

(24)

where the state is (u(t), w(t, ·)) ∈ R × L2(0, 1).

Let us denote by (µk, X̂k) with k = 0, . . . , n, the eigenvalues and eigenvectors of
the matrix (An + BnKn).

It is not difficult to see that the eigenvalues of the closed-loop system (24) are

Ev = {µ0, µ1, . . . , µn, σn+1, σn+2, . . . },
and the corresponding eigenfunctions are given by

Ef =

{(

X̂0

g0

)

, . . . ,

(

X̂n

gn

)

,

(

0
Pn+1(φn+1)

)

,

(

0
Pn+1(φn+2)

)

, . . .

}

,

where the functions gk ∈ span{φn+1, φn+2, . . . } ⊂ L2(0, 1) are defined by

(A − µk)gk = Fn(X̂k) (25)

with Fn : R
n+1 −→ span{φn+1, φn+2, . . . } the following operator

(y0, . . . , yn) 7→
∑

j≥n+1

[

(aj + bjK
0
n)y0 + bjK

1
ny1 + · · · + bjK

n
nyn

]

φj .
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Let us note that to solve (25), we have to impose the conditions

µk 6= σj , ∀k = 0, . . . , n, ∀j ∈ N .

If we write Fn(X̂k) =
∑

j≥n+1 fk
j φj , then the solution to (25) is given by

gk =
∑

j≥n+1

fk
j

σj − µk

φj .

Finally, one can see that the subspace Ef form a basis of the space R × L2(0, 1)
and that all the eigenvalues of the closed-loop system are in the left half of the line
Re(z) = −1 on the complex plane. Thus, one obtains the exponential stability of
the closed loop system (24) and therefore Theorem 1.2.

Acknowledgements. The author thanks Miroslav Krstic for having attracted his
attention to the KS equation and for fruitful discussions.
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