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Abstract

The generalized Hirota-Satsuma system consists of three coupled nonlinear Korteweg-de
Vries (KdV) equations. By using two distributed controls it is proven in this paper that the
local null controllability property holds when the system is posed on a bounded interval. First,
the system is linearized around the origin obtaining two decoupled subsystems of third order
dispersive equations. This linear system is controlled with two inputs, which is optimal. This
is done with a duality approach and some appropriate Carleman estimates. Then, by means of
an inverse function theorem, the local null controllability of the nonlinear system is proven.
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1 Introduction

In the eighties, Hirota and Satsuma introduced in [14] the set of two coupled Korteweg-de Vries
(KdV) equations,

(1.1)

{
ut − 1

4uxxx = 3uux − 6vvx,
vt + 1

2vxxx = −3uvx,

describing the interaction of two long waves with different dispersion relations. They studied the
existence of soliton solutions and conserved quantities. Later, in [21] the same authors introduced
a new system, coupling now three KdV equations,

(1.2)


ut − 1

4uxxx = 3uux − 6vvx + 3wx,
vt + 1

2vxxx = −3uvx,
wt + 1

2wxxx = −3uwx.

This set of equations was called in the literature the generalized Hirota-Satsuma (HS) system and
has attracted the attention of many researchers mainly interested in soliton or explicit solutions.
See for instance [12, 22] and the references therein.
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As far as we know, there is no studies of the control properties of this kind of coupled systems.
Thus, in this article the goal is to fill this gap focusing on the null controllability with distributed
controls. An important point is that we obtain our results on the control of this three-equation
system using only two control inputs.

Let us precise which system we will control. We can see that the first equation in (1.2) is of
KdV type with a negative dispersive term whereas the two others have positive dispersive term.
Considering these facts, we propose to study equations (1.2) on a spatial domain [0, L] with the
usual boundary conditions for KdV equations, as for instance in [18],

(1.3)


u(t, 0) = u(t, L) = 0, ux(t, 0) = 0,
v(t, 0) = v(t, L) = 0, vx(t, L) = 0,
w(t, 0) = w(t, L) = 0, wx(t, L) = 0,

and the initial conditions

(1.4) u(0, x) = u0(x), v(0, x) = v0(x), w(0, x) = w0(x).

As mentioned previously, we consider here the internal control case. Thus, we study the following
system, with T > 0 and Q = (0, T )× (0, L),

(1.5)



ut − 1
4uxxx = 3uux − 6vvx + 3wx, (t, x) ∈ Q,

vt + 1
2vxxx = −3uvx + p1γ , (t, x) ∈ Q,

wt + 1
2wxxx = −3uwx + q1ω, (t, x) ∈ Q,

u(t, 0) = u(t, L) = 0, ux(t, 0) = 0, t ∈ (0, T ),
v(t, 0) = v(t, L) = 0, vx(t, L) = 0, t ∈ (0, T ),
w(t, 0) = w(t, L) = 0, wx(t, L) = 0, t ∈ (0, T ),
u(0, x) = u0(x), v(0, x) = v0(x), w(0, x) = w0(x), x ∈ (0, L),

where p = p(t, x) and q = q(t, x) are the distributed controls acting on two subdomains γ and ω
with γ ⊂ (0, L) and either ω = (a, L) or ω = (0, a) for some 0 < a < L. From now on, we only
consider ω = (a, L) but everything can be done in similar ways for the other case.

The control of dispersive equations is an active research field. The first results for single KdV
equations with internal controls were presented in [19, 20] where periodic domains were considered.
Also in this framework we found the paper [15]. More related to this paper we can cite [6] where
the authors study the internal control of a KdV equation on a bounded domain with the same kind
of boundary conditions than here. They use duality arguments and a Carleman estimate to prove
an observability inequality.

Regarding dispersive systems, we find papers dealing with the boundary controls of either KdV
systems on a bounded domain [8, 16, 4, 5] or KdV equations posed on a network [1, 7]. Concerning
the internal control of dispersive systems, the closest works are [17] where Ingham theorems are used
to prove some observability inequalities for Boussinesq systems and [2] where a Carleman estimates
approach is used to get the null controllability of a linear system coupling a KdV equation with a
Schrödinger equation.

Summarizing the links with the existent literature, in this paper we follow the same methods
than in [6] and [2] to study the null controllability property of a dispersive system with less controls
than equations.

Let us go back to the control of system (1.5). The first step in our strategy is to linearize the
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system (1.5) around the origin, getting the linear system

(1.6)



ut − 1
4uxxx = f1 + 3wx, (t, x) ∈ Q,

vt + 1
2vxxx = f2 + p1γ , (t, x) ∈ Q,

wt + 1
2wxxx = f3 + q1ω, (t, x) ∈ Q,

u(t, 0) = u(t, L) = 0, ux(t, 0) = 0, t ∈ (0, T ),
v(t, 0) = v(t, L) = 0, vx(t, L) = 0, t ∈ (0, T ),
w(t, 0) = w(t, L) = 0, wx(t, L) = 0, t ∈ (0, T ),
u(0, x) = u0(x), v(0, x) = v0(x), w(0, x) = w0(x), x ∈ (0, L),

where f1, f2 and f3 will play later the role of the nonlinearities. In order to study the null
controllability of (1.6) we apply a duality approach that leads us to prove that the solutions of the
adjoint system

(1.7)



−φt + 1
4φxxx = g1, (t, x) ∈ Q,

−ψt − 1
2ψxxx = g2, (t, x) ∈ Q,

−ηt − 1
2ηxxx = g3 − 3φx, (t, x) ∈ Q,

φ(t, 0) = φ(t, L) = 0, φx(t, L) = 0, t ∈ (0, T ),
ψ(t, 0) = ψ(t, L) = 0, ψx(t, 0) = 0, t ∈ (0, T ),
η(t, 0) = η(t, L) = 0, ηx(t, 0) = 0, t ∈ (0, T ),
φ(T, x) = φT (x), ψ(T, x) = ψT (x), η(T, x) = ηT (x), x ∈ (0, L),

satisfy an appropriate observability inequality. This is realized proving a Carleman estimate for
system (1.7) where functions g1, g2 and g3 are useful to get information on the solutions of (1.6)
when using duality arguments.

Finally, the last step in our strategy is to go back to the original nonlinear system by using an in-
verse function theorem. In this way we will get our main result, stating the local null controllability
of (1.5).

Theorem 1 Let γ ⊂ (0, L) and ω = (a, L), with a ∈ (0, L). Assume that (u0, v0, w0) ∈ L2(0, L).
Then, for every T > 0 there exists δ > 0 such that if ‖(u0, v0, w0)‖L2(0,L)3 < δ, there are controls
p ∈ L2(0, T ;L2(γ)) and q ∈ L2(0, T ;L2(ω)) such that the solution (u, v, w) of (1.5) satisfies

u(T, x) = v(T, x) = w(T, x) = 0 in (0, L).

The organization of this paper is the following. We start giving in Section 2 the well-posedness
framework in which we work along this paper. Then, Section 3 is devoted to the proof of a Carleman
estimate that is used to prove an appropriate observability inequality. Section 4 contains the control
results for both the linear and nonlinear systems. Finally, we end this paper with some comments
and related open problems.

2 Well-posedness results

In this section, we give the functional framework and some well-possedness results for the KdV
equation, and the linear and nonlinear systems.

2.1 Functional spaces

We introduce the following functional spaces:

(2.1)
X0 := L2(0, T ;H−2(0, L)), X1 := L2(0, T ;H2

0 (0, L)),

X̃0 := L1(0, T ;H−1(0, L)), X̃1 := L1(0, T ;H3(0, L) ∩H2
0 (0, L)),
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and

(2.2)
Y0 := L2(0, T ;L2(0, L)) ∩ C([0, T ];H−1(0, L)),
Y1 := L2(0, T ;H4(0, L)) ∩ C([0, T ];H3(0, L)).

These spaces are equipped with their usual norms. Moreover, we define for each θ ∈ [0, 1] the
interpolation spaces (see [3]):

Xθ := (X0, X1)[θ], X̃θ := (X̃0, X̃1)[θ] and Yθ := (Y0, Y1)[θ].

A sample of spaces that will be often used in the following is

X1/4 = L2(0, T ;H−1(0, L)), X̃1/4 = L1(0, T ;L2(0, L)),

Y1/4 = L2(0, T ;H1(0, L)) ∩ C([0, T ];L2(0, L)).

2.2 Regularity results for a single equation

We first consider a single KdV equation with a source term:

(2.3)


χt + χxxx = g, in Q,
χ(t, 0) = χ(t, L) = χx(t, L) = 0, in (0, T ),
χ(0, x) = χ0(x), in (0, L).

For this equation we have the following known results.

Proposition 2 [13, Section 2.2.2] If χ0 ∈ L2(0, L) and g ∈ G with G = X1/4 or G = X̃1/4, then
system (2.3) admits a unique solution χ ∈ Y1/4. Moreover, there exists a constant C > 0 such that

(2.4) ‖χ‖Y1/4 ≤ C(‖g‖G + ‖χ0‖L2(0,L))).

Proposition 3 [13, Section 2.3.1] If χ0 ∈ H3(0, L) is such that χ0(0) = χ0(L) = χ′0(0) = 0 and
g ∈ G with G = X1 or G = X̃1, then system (2.3) admits a unique solution χ ∈ Y1. Moreover,
there exists a constant C > 0 such that

(2.5) ‖χ‖Y1 ≤ C(‖g‖G + ‖χ0‖H3(0,L))).

Proposition 4 [13, Section 2.3.2] Let θ ∈ [1/4, 1] and χ0 = 0. If g ∈ G with G = Xθ or G = X̃θ,
then system (2.3) admits a unique solution χ ∈ Yθ. Moreover, there exists a constant C > 0 such
that

(2.6) ‖χ‖Yθ ≤ C‖g‖G.

Notice that the same results are valid for the (backward-in-time) adjoint equation

(2.7)


−χt − dχxxx = g, in Q,
χ(t, 0) = χ(t, L) = χx(t, 0) = 0, in (0, T ),
χ(T, x) = χ0(x), in (0, L),

and the reverse-in-space equation,

(2.8)


χt − dχxxx = g, in Q,
χ(t, 0) = χ(t, L) = χx(t, 0) = 0, in (0, T ),
χ(0, x) = χ0(x), in (0, L),

for any dispersive coefficient d > 0.
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2.3 Regularity results for the linear system

We first consider the linear system (1.6). Taking advantage of its cascade structure, notice that
we can apply the results for a single equation in order to get the solutions v and w (Proposition 2,
for instance). Then, we can see the term 3wx as a source term in the equation satisfied by u.
Therefore, we can easily obtain the following result.

Proposition 5 Let u0, v0, w0 ∈ L2(0, L), p ∈ L2(0, T ;L2(γ)), q ∈ L2(0, T ;L2(ω)), and f1, f2, f3 ∈
G with G = X1/4 or G = X̃1/4. Then, system (1.6) admits a unique solution (u, v, w) ∈ (Y1/4)3.
Moreover, there exists a constant C > 0 such that

(2.9) ‖(u, v, w)‖(Y1/4)3 ≤ C
(
‖(u0, v0, w0)‖L2(0,L)3 + ‖(f1, f2, f3)‖G3

+ ‖p‖L2(0,T ;L2(γ)) + ‖q‖L2(0,T ;L2(ω))

)
.

The regularity p ∈ L2(0, T ;L2(γ)) and q ∈ L2(0, T ;L2(ω)) is enough to be sure that p1γ and
q1ω belong to both L2(0, T ;H−1(0, L)) and L1(0, T ;L2(0, L)). Consequently they can be seen as
appropriate source terms in Proposition 2.

This result can be applied to the adjoint system (1.7) with appropriate functions g1, g2, and g3.
To do that we only need to perform a change of variable in space x ≈ L− x and time t ≈ T − t.

2.4 Regularity results for the nonlinear system

In this section we apply a fixed point argument in order to establish the well-posedness of the
nonlinear system (1.5). First of all, we prove the following lemma inspired from [18].

Lemma 6 Let y, z ∈ L2(0, T ;H1(0, L)). Then yzx ∈ L1(0, T ;L2(0, L)) and the map (y, z) ∈
(L2(0, T ;H1(0, L)))2 7→ yzx ∈ L1(0, T ;L2(0, L)) is continuous.

Proof.
Let (y, z) and (ỹ, z̃) in (L2(0, T ;H1(0, L)))2, and let us denote by K the norm of the embedding

H1(0, L) ↪→ L∞(0, L). We then have

‖yzx − ỹz̃x‖L1(0,T ;L2(0,L)) ≤
∫ T

0
‖(y − ỹ)zx‖L2(0,L)dt+

∫ T

0
‖ỹ(z − z̃)x‖L2(0,L)dt

≤
∫ T

0
‖y − ỹ‖L∞(0,L)‖zx‖L2(0,L)dt+

∫ T

0
‖ỹ‖L∞(0,L)‖(z − z̃)x‖L2(0,L)dt

≤ K
(∫ T

0
‖y − ỹ‖H1(0,L)‖z‖H1(0,L)dt+

∫ T

0
‖ỹ‖H1(0,L)‖z − z̃‖H1(0,L)dt

)
≤ K‖(y, z)‖(L2(0,T ;H1(0,L)))2‖(y − ỹ, z − z̃)‖(L2(0,T ;H1(0,L)))2 ,

which proves Lemma 6. �
We can now prove the following well-posedness result.

Proposition 7 Let L > 0 and T > 0. There exist ε > 0 and C > 0 such that for every
(u0, v0, w0) ∈ L2(0, L)3, p ∈ L2(0, T ;L2(γ)), q ∈ L2(0, T ;L2(ω)), such that

‖(u0, v0, w0)‖L2(0,L)3 + ‖p‖L2(0,T ;L2(γ)) + ‖q‖L2(0,T ;L2(ω)) ≤ ε

there exists a unique solution (u, v, w) ∈ (Y1/4)3 of the non linear equation (1.5) that satisfies

‖(u, v, w)‖(Y1/4)3 ≤ C
(
‖(u0, v0, w0)‖L2(0,L)3 + ‖p‖L2(0,T ;L2(γ)) + ‖q‖L2(0,T ;L2(ω))

)
.
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Proof.
Let (u0, v0, w0) ∈ L2(0, L)3, p ∈ L2(0, T ;L2(γ)), q ∈ L2(0, T ;L2(ω)), such that

‖(u0, v0, w0)‖L2(0,L)3 + ‖p‖L2(0,T ;L2(γ)) + ‖q‖L2(0,T ;L2(ω)) ≤ ε

where ε will be chosen small enough later. Let (u, v, w) ∈ (Y1/4)3 and consider the map Φ :
(Y1/4)3 → (Y1/4)3 defined by Φ(u, v, w) = (ũ, ṽ, w̃) where (ũ, ṽ, w̃) is the solution of the linear
problem, 

ũt − 1
4 ũxxx = 3uux − 6vvx + 3w̃x, in Q,

ṽt + 1
2 ṽxxx = −3uvx + p1γ , in Q,

w̃t + 1
2 w̃xxx = −3uwx + q1ω, in Q,

ũ(t, 0) = ũ(t, L) = 0, ũx(t, 0) = 0, in (0, T ),
ṽ(t, 0) = ṽ(t, L) = 0, ṽx(t, L) = 0, in (0, T ),
w̃(t, 0) = w̃(t, L) = 0, w̃x(t, L) = 0, in (0, T ),
ũ(0, x) = u0(x), ṽ(0, x) = v0(x), w̃(0, x) = w0(x), in (0, L).

By Proposition 5 we have

(2.10)

‖Φ(u, v, w)‖Y 3
1/4

= ‖(ũ, ṽ, w̃)‖Y 3
1/4
≤ C

(
‖(u0, v0, w0)‖L2(0,L)3 +‖(3uux−6vvx,−3uvx,−3uwx)‖X̃3

1/4

+ ‖p‖L2(0,T ;L2(γ)) + ‖q‖L2(0,T ;L2(ω))

)
.

By Lemma 6, we obtain,

(2.11) ‖Φ(u, v, w)‖Y 3
1/4

= ‖(ũ, ṽ, w̃)‖Y 3
1/4
≤ C

(
‖(u0, v0, w0)‖L2(0,L)3 + ‖(u, v, w)‖2Y 3

1/4

+ ‖p‖L2(0,T ;L2(γ)) + ‖q‖L2(0,T ;L2(ω))

)
.

We also have, for any (u1, v1, w1) ∈ (Y1/4)3 and (u2, v2, w2) ∈ (Y1/4)3,

(2.12)

‖Φ(u1, v1, w1)−Φ(u2, v2, w2)‖Y 3
1/4
≤ C

(
‖(u1, v1, w1)‖Y 3

1/4
+‖(u2, v2, w2)‖Y 3

1/4

)
‖(u1, v,w1)−(u2, v2, w2)‖Y 3

1/4

Thus, if we restrict Φ to a closed ball B(0, R) = {(u, v, w) ∈ (Y1/4)3, ‖(u, v, w)‖2
Y 3
1/4

≤ R} where

R > 0 will be chosen later, we have the estimate,

‖Φ(u, v, w)‖Y 3
1/4
≤ C(ε+R2) and ‖Φ(u1, v1, w1)−Φ(u2, v2, w2)‖Y 3

1/4
≤ 2CR‖(u1, v,w1)−(u2, v2, w2)‖Y 3

1/4
.

Then if we take R and ε such that R < 1
2C and ε < R

2C , we can apply the Banach fixed point
theorem and Φ admits a unique fixed point, which ends the proof of Proposition 7.

�

3 Carleman inequalities

This section is dedicated to Carleman estimates. First, we present a general estimate for a KdV
equation with observation in an interior domain. Then, we will prove a new Carleman estimate for
the whole adjoint system (1.7).
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3.1 Carleman weights

Let ω0 = (a0, b0) ⊂ (0, L), and set c0 = (a0 + b0)/2. Consider the weight functions defined in [2],
namely for K1,K2 > 0, let

(3.1) ϕ0(x) = K1(1− e−K2(x−c0)2) + 1, ξ(t) =
1

t(T − t)

and

(3.2) ϕ(t, x) := ξ(t)ϕ0(x).

Notice that, for any K1,K2 > 0, we have

(3.3) ϕ > 0 in (0, T )× [0, L],

(3.4) |ϕx| > 0 in (0, T )× ([0, L] \ ω̄0),

(3.5) ϕx(t, 0) < 0, ϕx(t, L) > 0 in (0, T ).

Furthermore, K1 and K2 can be chosen such that

(3.6) ϕxx < 0 in (0, T )× ([0, L] \ ω̄0),

and

(3.7) 56ϕ̌(t) > 55ϕ̂(t) in (0, T ),

where ϕ̌(t) := min
x∈[0,L]

ϕ(t, x) and ϕ̂(t) := max
x∈[0,L]

ϕ(t, x).

Indeed, property (3.6) holds for

K2 =
4

(b0 − a0)2
.

Now, let us notice that
ϕ̌(t) = ϕ(t, c0) = ξ(t),

and
ϕ̂(t) = max{ϕ(t, 0), ϕ(t, L)} = ξ(t) max{ϕ0(0), ϕ0(L)},

since the extremum of the interval where the maximum is achieved depends on the location of c0.
Thus, if we call

C(K2, c0) = max{1− e−K2c20 , 1− e−K2(L−c0)2},

then, it suffices to take K1 = (110C(K2, c0))−1 for (3.7) to hold.
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3.2 Carleman estimate for a single KdV equation

In this section, we establish a Carleman estimate for the general backward in time KdV equation
of the following type, for ν ∈ R∗:

(3.8)


yt + νyxxx = g, in Q,
y(t, 0) = y(t, L) = 0, in (0, T ),
( ν
|ν| + 1)yx(t, 0) + ( ν

|ν| − 1)yx(t, L) = 0, in (0, T ),

y(T, x) = yT (x), in (0, L).

To begin, we recall a Carleman estimate for the linear KdV equation (3.8) obtained in [2,
Theorem 3.1] and [6, Proposition 3.1]. Their results are obtained in the case ν > 0, but they can
easily be converted in the case ν < 0 by using the change of variables x 7→ L− x. We can re-write
that estimate as follows.

Proposition 8 Let T > 0 and ω0 ⊂ (0, L) as in Section 3.1. There exist C0 > 0, and s0 > 0 such
that for any g ∈ L2(0, T ;L2(0, L)), yT ∈ L2(0, L), and s ≥ s0, the solution y of (3.8) satisfies

(3.9)

∫
Q

[
sξ|yxx|2 + (sξ)3|yx|2 + (sξ)5|y|2

]
e−2sϕdxdt

≤ C0

(∫
Q
e−2sϕ|g|2dxdt+

∫ T

0

∫
ω0

[
s5ξ5|y|2 + sξ|yxx|2

]
e−2sϕdxdt

)
.

The idea is to set the path for the Carleman estimate for the adjoint system (1.7). To this
end, we will prove from estimate (3.9) the following inequality with more regular right-hand side
in (3.8).

Proposition 9 Let T > 0 and ω0 ⊂ (0, L) as in Section 3.1. There exist C0 > 0, and s0 > 0 such
that for any yT ∈ L2(0, L), and s ≥ s0:

If g ∈ L2(0, T ;H1/3(0, L)), then the solution y of (3.8) satisfies

(3.10)

∫
Q

[sξ|yxx|2 + (sξ)3|yx|2 + (sξ)5|y|2]e−2sϕdxdt+

∫ T

0
sξ−3e−2sϕ̂‖y‖2

H7/3(0,L)
dt

≤ C
∫
Q
s3ξe−2sϕ|g|2dxdt+ C

∫ T

0
sξ−3e−2sϕ̂‖g‖2

H1/3(0,L)
dt

+ C

∫ T

0

∫
ω0

sξ25|y|2e−2s(7ϕ̌−6ϕ̂)dxdt.

If g ∈ L2(0, T ;H2/3(0, L)), then the solution y of (3.8) satisfies

(3.11)

∫
Q

[sξ|yxx|2 + (sξ)3|yx|2 + (sξ)5|y|2]e−2sϕdxdt+

∫ T

0
sξ−3e−2sϕ̂‖y‖2

H8/3(0,L)
dt

≤ C
∫
Q
s3ξe−2sϕ|g|2dxdt+ C

∫ T

0
sξ−3e−2sϕ̂‖g‖2

H2/3(0,L)
dt

+ C

∫ T

0

∫
ω0

sξ13|y|2e−2s(4ϕ̌−3ϕ̂)dxdt.
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Proof.
To begin the proof, notice that, from the properties of the weight function ϕ, we can write from

(3.9),

(3.12)

∫
Q

[sξ|yxx|2 + (sξ)3|yx|2 + (sξ)5|y|2]e−2sϕdxdt

≤ C0

(∫
Q
e−2sϕ|g|2dxdt+

∫ T

0

∫
ω0

s5ξ5|y|2e−2sϕdxdt+

∫ T

0

∫
ω0

sξ|yxx|2e−2sϕ̌dxdt

)
.

We will now apply a bootstrap argument in order to eliminate the local term of yxx appearing in
the right hand-side of (3.12). Let

I :=

∫ T

0

∫
ω0

sξe−2sϕ̌|yxx|2dxdt.

Since ϕ̌ does not depend on space, we have

I ≤ s
∫ T

0
ξe−2sϕ̌‖y‖2H2(ω0)dt.

Let µ ∈ (0, 1] and ε > 0. Using an interpolation argument between the spaces H2+µ(ω0) and
L2(ω0), together with Young’s inequality, we have

I ≤ C
∫ T

0
sξe−2sϕ̌‖y‖4/(2+µ)

H2+µ(ω0)
‖y‖2µ/(2+µ)

L2(ω0)
dt

≤ ε
∫ T

0
sξ−3e−2sϕ̂‖y‖2H2+µ(ω0)dt+ Cε

∫ T

0
sξ1+8/µe−2s[(1+2/µ)ϕ̌−2/µϕ̂]‖y‖2L2(ω0)dt.

(3.13)

The idea is now to remove the first term in the right-hand side of (3.13). We follow the same
arguments as in [13, 6, 2] and adapt a technique of bootstrap. We define y1(t, x) := θ1(t)y(t, x)
with θ1(t) = s1/2ξ1/2e−sϕ̂. Thus y1 is solution of the system,

y1t + νy1xxx = f1 := θ1g + θ1ty in Q,
y1(t, 0) = y1(t, L) = 0, in (0, T ),
( ν
|ν| + 1)y1x(t, 0) + ( ν

|ν| − 1)y1x(t, L) = 0, in (0, T ),

y1(T, x) = 0 in (0, L).

As |θ1t| ≤ Cs3/2ξ5/2e−sϕ̂, we have for C > 0 and all s ≥ s0, that f1 ∈ L2(Q) = X1/2 and

‖f1‖2L2(Q) ≤ C
∫
Q
sξe−2sϕ̂|g|2dxdt+ C

∫
Q
s3ξ5e−2sϕ̂|y|2dxdt.(3.14)

Then, from Proposition 4, we have that y1 ∈ Y1/2, and, in particular,

(3.15) ‖y1‖2L2(0,T ;H2(0,L)) ≤ C‖f1‖2L2(Q).

Now we take y2(t, x) := θ2(t)y(t, x) with θ2(t) = s1/2ξ−3/2e−sϕ̂. Then, y2 satisfies the system
y2t + νy2xxx = f2 := θ2g + θ2tθ

−1
1 y1 in (0, T )× (0, L),

y2(t, 0) = y2(t, L) = 0 in (0, T ),
( ν
|ν| + 1)y2x(t, 0) + ( ν

|ν| − 1)y2x(t, L) = 0, in (0, T ),

y2(T, x) = 0 in (0, L).

9



Notice that since |θ2tθ
−1
1 | ≤ Cs, and if g ∈ L2(0, T ;Hµ(0, L)), we have that f2 ∈ L2(0, T ;Hµ(0, L)).

From Proposition 4 (with = X1/2+µ/4), we deduce that

y2 ∈ Y1/2+µ/4 = L2(0, T ;H2+µ(0, L)) ∩ L∞(0, T ;H1+µ(0, L)),

and,
‖y2‖2Y1/2+µ/4 ≤ C‖f2‖2L2(0,T ;Hµ(0,L)).

In particular,

(3.16) ‖y2‖2L2(0,T ;H2+µ(0,L)) ≤ Cs
∫ T

0
ξ−3e−2sϕ̂‖g‖2Hµ(0,L)dt+ Cs2‖y1‖2L2(0,T ;H2(0,L)).

Then we get, from (3.14), (3.15) and (3.16)

(3.17)

∫ T

0
sξ−3e−2sϕ̂‖y(t, .)‖2H2+µ(0,L)dt

≤ C
∫ T

0

(
sξ−3‖g‖2Hµ(0,L) + s3ξ‖g‖2L2(0,L)

)
e−2sϕ̂dt+ C

∫
Q
s5ξ5|y|2e−2sϕ̂dxdt.

By combining (3.17), (3.13) and (3.12), together with a good choice of ε, we get Carleman
estimates (3.10) and (3.11) taking µ equal to 1/3 and 2/3, respectively.

�

3.3 Carleman estimate for the adjoint system

We now prove a Carleman estimate for the adjoint system (1.7). For this, we will use two weight
functions. Given ω1 = (a1, b1), and γ1 = (a2, b2) two proper subsets of (0, L), we define ϕ1

0 and ϕ2
0

as in (3.1) associated to the subsets ω1 and γ1, respectively. Then, for i = 1, 2, let

ϕi(t, x) := ξ(t)ϕi0(x),

Ii7/3(y) :=

∫
Q

[
sξ|yxx|2 + (sξ)3|yx|2 + (sξ)5|y|2

]
e−2sϕidxdt+

∫ T

0
sξ−3e−2sϕ̂i‖y‖2

H7/3(0,L)
dt

and

Ii8/3(y) :=

∫
Q

[
sξ|yxx|2 + (sξ)3|yx|2 + (sξ)5|y|2

]
e−2sϕidxdt+

∫ T

0
sξ−3e−2sϕ̂i‖y‖2

H8/3(0,L)
dt.

The main result of this section is the following.

Theorem 10 Let ω, and γ subsets of (0, L) as in Theorem 1. Fix ω1 and γ1 proper subsets of
ω and γ, respectively, such that ω̄1 ⊂ ω and γ̄1 ⊂ γ. Then, there exist C0 > 0, and s0 > 0 such
that for any g1 ∈ L2(0, T ;H2/3(0, L)), g2 ∈ L2(0, T ;H1/3(0, L)), and g3 ∈ L2(0, T ;H1/3(0, L)) and
s ≥ s0, the solution (φ, ψ, η) of system (1.7) satisfies

(3.18) I1
8/3(φ) + I2

7/3(ψ) + I1
7/3(η)

≤ C
∫ T

0

∫
γ
sξ25e−2s(7ϕ̌2−6ϕ̂2)|ψ|2dxdt+ C

∫ T

0

∫
ω
sξ221e−2s(56ϕ̌1−55ϕ̂1)|η|2dxdt

+ C

∫ T

0
s3ξe−2sϕ̌1‖g1‖2H2/3(0,L)

dt+ C

∫ T

0
s3ξe−2sϕ̌2‖g2‖2H1/3(0,L)

dt

+ C

∫ T

0
s3ξ23e−2s(8ϕ̌1−7ϕ̂1)‖g3‖2H1/3(0,L)

dt,

where ϕ1 and ϕ2 are the weight functions associated to ω1 and γ1, respectively.
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Proof.
We begin applying Proposition 9 to the equation in (1.7) satisfied by ψ, taking ω0 = γ1, ϕ = ϕ2,

ν = 1/2, and g = −g2. From (3.10), we obtain

I2
7/3(ψ) ≤ C

∫
Q
s3ξe−2sϕ2 |g2|2dxdt+ C

∫ T

0
sξ−3e−2sϕ̂2‖g2‖2H1/3(0,L)

dt

+ C

∫ T

0

∫
γ1

sξ25e−2s(7ϕ̌2−6ϕ̂2)|ψ|2dxdt.

Using the properties of the weight functions, we have

(3.19) I2
7/3(ψ) ≤ C

∫ T

0
s3ξe−2sϕ̌2‖g2‖2H1/3(0,L)

dt+ C

∫ T

0

∫
γ1

sξ25e−2s(7ϕ̌2−6ϕ̂2)|ψ|2dxdt.

Now, for φ we apply the second inequality of Proposition 9 with ω0 = ω1, ϕ = ϕ1, ν = −1/4, and
g = −g1. In this way, from (3.11) we get, after using the properties of the weight functions, the
estimate

(3.20) I1
8/3(φ) ≤ C

∫ T

0
s3ξe−2sϕ̌1‖g1‖2H2/3(0,L)

dt+ C

∫ T

0

∫
ω1

sξ13e−2s(4ϕ̌1−3ϕ̂1)|φ|2dxdt.

Lastly, we apply Proposition 9 to the equation in (1.7) satisfied by η, with ω0 = ω1, ϕ = ϕ1,
ν = 1/2, and g = −g3 + 3φx. From (3.10), we obtain

I1
7/3(η) ≤ C

∫
Q
s3ξe−2sϕ1 |g3 − 3φx|2dxdt+ C

∫ T

0
sξ−3e−2sϕ̂1‖g3 − 3φx‖2H1/3(0,L)

dt

+ C

∫ T

0

∫
ω1

sξ25e−2s(7ϕ̌1−6ϕ̂1)|η|2dxdt,

from where we deduce

(3.21) I1
7/3(η) ≤ C

∫ T

0
s3ξe−2sϕ̌1‖g3‖2H1/3(0,L)

dt+ C

∫ T

0

∫
ω1

sξ25e−2s(7ϕ̌1−6ϕ̂1)|η|2dxdt+ CI1
8/3(φ).

Putting together inequalities (3.19)-(3.20) we have

(3.22) I1
8/3(φ) + I2

7/3(ψ) + I1
7/3(η) ≤ C

∫ T

0
s3ξe−2sϕ̌1‖g1‖2H2/3(0,L)

dt

+C

∫ T

0
s3ξe−2sϕ̌2‖g2‖2H1/3(0,L)

dt+C

∫ T

0
s3ξe−2sϕ̌1‖g3‖2H1/3(0,L)

dt+C

∫ T

0

∫
γ1

sξ25e−2s(7ϕ̌2−6ϕ̂2)|ψ|2dxdt

+ C

∫ T

0

∫
ω1

sξ25e−2s(7ϕ̌1−6ϕ̂1)|η|2dxdt+ C

∫ T

0

∫
ω1

sξ13e−2s(4ϕ̌1−3ϕ̂1)|φ|2dxdt.

To finish the proof of estimate (3.18), it remains to absorb the last term of this inequality. The
idea is to use the coupling of the equation satisfied by η in system (1.7) to express φ in terms of η.
However, since the coupling is of first order, this cannot be done directly. Here, we will need the
fact that ω “touches” the boundary of (0, L). Let us call

J :=

∫ T

0

∫
ω1

sξ13e−2s(4ϕ̌1−3ϕ̂1)|φ|2dxdt,
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and consider ω2 := (δ, L), with δ ∈ (0, L) such that ω1 ⊂ ω2 ⊂ ω, where all the inclusions are strict.
Since φ(t, L) = 0, we have with Poincar’s inequality that

J ≤ C
∫ T

0

∫
ω2

sξ13e−2s(4ϕ̌1−3ϕ̂1)|φx|2dxdt.

We concentrate on this term. Let θ ∈ C∞([0, L]) a non-negative function such that θ(x) = 0 for
x ∈ [0, L] \ ω, and θ(x) = 1 for x ∈ ω2. Then, using the equation satisfied by η in system (1.7), we
have

J ≤ C
∫ T

0

∫
ω
θ(x)sξ13e−2s(4ϕ̌1−3ϕ̂1)|φx|2dxdt

=
C

6

∫ T

0

∫
ω
θ(x)sξ13e−2s(4ϕ̌1−3ϕ̂1)φx

(
2g3 + ηxxx + 2ηt

)
dxdt

=: J1 + J2 + J3.

(3.23)

Let ε > 0. We estimate each one of these terms. Using Young’s inequality, we have

(3.24) J1 ≤ Cε
∫
Q
s−1ξ23e−2s(8ϕ̌1−7ϕ̂1)|g3|2dxdt+ εI1

8/3(φ).

For J2, taking into account that φx(t, L) = 0, we integrate by parts in space:

J2 = −C
6

∫ T

0

∫
ω
θ′(x)sξ13e−2s(4ϕ̌1−3ϕ̂1)φxηxxdxdt−

C

6

∫ T

0

∫
ω
θ(x)sξ13e−2s(4ϕ̌1−3ϕ̂1)φxxηxxdxdt,

where we use Young’s inequality to obtain

(3.25) J2 ≤ Cε
∫ T

0

∫
ω
sξ25e−2s(8ϕ̌1−7ϕ̂1)|ηxx|2dxdt+ εI1

8/3(φ).

The third and last term is the more delicate one. We integrate by parts once in time and space
in the term J3. We get

J3 = −C
3

∫ T

0

∫
ω
θ(x)s

(
ξ13e−2s(4ϕ̌1−3ϕ̂1)

)
t
φxηdxdt+

C

3

∫ T

0

∫
ω
sξ13e−2s(4ϕ̌1−3ϕ̂1)φt

(
θ(x)η

)
x
dxdt

=: J31 + J32.

For the first term, since ∣∣(ξ13e−2s(4ϕ̌1−3ϕ̂1)
)
t

∣∣ ≤ Csξ15e−2s(4ϕ̌1−3ϕ̂1),

we have that

J31 ≤ Cε
∫ T

0

∫
ω
sξ27e−2s(8ϕ̌1−7ϕ̂1)|η|2dxdt+ εI1

8/3(φ).

For the second one, we use the fact that φt = 1
4φxxx − g1 and integrate by parts in space. This

is:

J32 =
C

12

∫ T

0

∫
ω
sξ13e−2s(4ϕ̌1−3ϕ̂1)(φxxx − 4g1)

(
θ(x)η

)
x
dxdt

=− C

3

∫ T

0

∫
ω
sξ13e−2s(4ϕ̌1−3ϕ̂1)g1

(
θ(x)η

)
x
dxdt

− C

12

∫ T

0

∫
ω
sξ13e−2s(4ϕ̌1−3ϕ̂1)φxx

(
θ(x)η

)
xx
dxdt+

C

12

∫ T

0
sξ13e−2s(4ϕ̌1−3ϕ̂1)φxx(t, L)ηx(t, L)dt.
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We observe the following:

• −C
3

∫ T

0

∫
ω
sξ13e−2s(4ϕ̌1−3ϕ̂1)g1

(
θ(x)η

)
x
dxdt

≤ C
∫ T

0

∫
ω
s3ξe−2sϕ1 |g1|2dxdt+ C

∫ T

0

∫
ω
s−1ξ25e−2s(8ϕ̌1−7ϕ̂1)

(
|η|2 + |ηx|2

)
dxdt;

• − C
12

∫ T

0

∫
ω
sξ13e−2s(4ϕ̌1−3ϕ̂1)φxx

(
θ(x)η

)
xx
dxdt

≤ εI1
8/3(φ) + Cε

∫ T

0

∫
ω
sξ25e−2s(8ϕ̌1−7ϕ̂1)

(
|η|2 + |ηx|2 + |ηxx|2

)
dxdt; and

• C
12

∫ T

0
sξ13e−2s(4ϕ̌1−3ϕ̂1)φxx(t, L)ηx(t, L)dt ≤ εI1

8/3(φ) + Cε

∫ T

0
sξ29e−2s(8ϕ̌1−7ϕ̂1)‖η‖2H2(ω)dt.

Going back to the expression of J3, we obtain

(3.26) J3 ≤ C
∫
Q
s3ξe−2sϕ1 |g1|2dxdt+ Cε

∫ T

0
sξ29e−2s(8ϕ̌1−7ϕ̂1)‖η‖2H2(ω)dt+ 3εI1

8/3(φ).

Let us gather what we have so far. Putting together estimates (3.24)-(3.26) in (3.23), we have

J ≤C
∫
Q
s3ξe−2sϕ1 |g1|2dxdt+

∫
Q
s−1ξ23e−2s(8ϕ̌1−7ϕ̂1)|g3|2dxdt

+ Cε

∫ T

0
sξ29e−2s(8ϕ̌1−7ϕ̂1)‖η‖2H2(ω)dt+ 5εI1

8/3(φ).

We estimate now the local term of η. Regarding H2(ω) as the interpolation of the spaces
H7/3(ω) and L2(ω), and Young’s inequality, we obtain

Cε

∫ T

0
sξ29e−2s(8ϕ̌1−7ϕ̂1)‖η‖2H2(ω)dt ≤ C

∫ T

0
sξ29e−2s(8ϕ̌1−7ϕ̂1)‖η‖12/7

H7/3(ω)
‖η‖2/7

L2(ω)
dt

≤ εI1
7/3(η) + Cε

∫ T

0
sξ221e−2s(56ϕ̌1−55ϕ̂1)‖η‖2L2(ω)dt.

Then, finally, we get

J ≤C
∫
Q
s3ξe−2sϕ1 |g1|2dxdt+

∫
Q
s−1ξ23e−2s(8ϕ̌1−7ϕ̂1)|g3|2dxdt

+ Cε

∫ T

0

∫
ω
sξ221e−2s(56ϕ̌1−55ϕ̂1)|η|2dxdt+ εI1

7/3(η) + 5εI1
8/3(φ).

Going back to (3.22), we deduce (3.18) by choosing the biggest weight functions and ε sufficiently
small.

�
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4 Control results

In this section, we establish an observability inequality for the solutions of system (1.7) and deduce
a null controllability result for the linear system (1.6). Moreover, we prove our main result getting
the local null controllability of system (1.5).

4.1 Observability inequality

The observability inequality will be deduced from Carleman estimate (3.18), but first, to be able
to deduce null controllability, we need to change the weight functions in such a way that they
do not vanish at t = 0. Before that, let us deduce a somewhat simpler version of the Carleman
estimate (3.18) which will be useful in what follows.

Let
ϕM := max

{
max
x∈[0,L]

ϕ1
0(x), max

x∈[0,L]
ϕ2

0(x)
}

and
ϕm := min

{
min
x∈[0,L]

ϕ1
0(x), min

x∈[0,L]
ϕ2

0(x)
}
.

Notice that if we call ϕ̂(t) := ξ(t)ϕM and ϕ̌(t) := ξ(t)ϕm, under the assumptions of Theorem 10
we can deduce from (3.18) the following inequality:

(4.1)

∫
Q
s3ξ3e−2sϕ̂(|φx|2 + |ψx|2 + |ηx|2)dxdt

≤ C
∫ T

0

∫
γ
sξ25e−2s(7ϕ̌−6ϕ̂)|ψ|2dxdt+ C

∫ T

0

∫
ω
sξ221e−2s(56ϕ̌−55ϕ̂)|η|2dxdt

+ C

∫ T

0
s3ξ23e−2s(8ϕ̌−7ϕ̂)

(
‖g1‖2H2/3(0,L)

+ ‖g2‖2H1/3(0,L)
+ ‖g3‖2H1/3(0,L)

)
dt.

Now, let β ∈ C1(0, T ) be defined by

β(t) =


4

T 2
, if t ∈ (0, T/2),

1

t(T − t)
, if t ∈ [T/2, T ),

and let us call
α̂(t) := β(t)ϕM and α̌(t) := β(t)ϕm.

Furthermore, we will assume also that g1, g2, and g3 in system (1.7) belong to L2(0, T ;H1
0 (0, L)).

This will make the analysis of the controllability of system (1.6) simpler later on.

Proposition 11 Let s be fixed such that Carleman estimate (3.18) holds. Assume that g1, g2, g3 ∈
L2(0, T ;H1

0 (0, L)). Then, every solution (φ, ψ, η) of system (1.7) satisfies

(4.2)

∫ L

0
(|φ(0, x)|2 + |ψ(0, x)|2 + |η(0, x)|2)dx+

∫
Q
β3e−2sα̂(|φx|2 + |ψx|2 + |ηx|2)dxdt

+ ‖β1/2e−sα̂φ‖2L∞(0,T ;L2(0,L)) + ‖β1/2e−sα̂ψ‖2L∞(0,T ;L2(0,L)) + ‖β1/2e−sα̂η‖2L∞(0,T ;L2(0,L))

≤ C
∫ T

0

∫
γ
β25e−2s(7α̌−6α̂)|ψ|2dxdt+ C

∫ T

0

∫
ω
β221e−2s(56α̌−55α̂)|η|2dxdt

+ C

∫
Q
β23e−2s(8α̌−7α̂)(|(g1)x|2 + |(g2)x|2 + |(g3)x|2)dxdt.
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Proof.
Let λ ∈ C1([0, T ]) be a non-negative function such that λ(t) = 1 if t ≤ T/2 and λ(t) = 0 if

t ≥ 3T/4. Then, from the system satisfied by (λφ, λψ, λη) and the estimate in Proposition 2, we
deduce that

‖λ(t)(φ, ψ, η)‖2L2(0,T ;H1
0 (0,L)) + ‖λ(t)(φ, ψ, η)‖2L∞(0,T ;L2(0,L))

≤ C‖λ(t)(g1, g2, g3)‖2L2(0,T ;L2(0,L)) + C‖λ′(t)(φ, ψ, η)‖2L2(0,T ;L2(0,L)),

from where

‖(φ, ψ, η)‖2L2(0,T/2;H1
0 (0,L)) + ‖(φ(0), ψ(0), η(0))‖2L2(0,L)

≤ C‖(g1, g2, g3)‖2L2(0,3T/4;L2(0,L)) + C‖(φ, ψ, η)‖2L2(T/2,3T/4;L2(0,L)).

Since e−2sϕ̂ ≥ C > 0 in (T/2, 3T/4), the last term of this estimate can be bounded from above
by the left-hand side of (4.1). Thus, we get

∫ L

0
(|φ(0)|2 + |ψ(0)|2 + |η(0)|2)dx+

∫ T/2

0

∫ L

0
β3e−2sα̂(|φx|2 + |ψx|2 + |ηx|2)dxdt

≤ C
∫ T

0

∫
γ
β25e−2s(7α̌−6α̂)|ψ|2dxdt+ C

∫ T

0

∫
ω
β221e−2s(56α̌−55α̂)|η|2dxdt

+ C

∫
Q
β23e−2s(8α̌−7α̂)(|(g1)x|2 + |(g2)x|2 + |(g3)x|2)dxdt,

where we have also used the fact that ξ ≡ β in (T/2, T ). Actually, using this last property again,
we see that ∫ T

T/2

∫ L

0
β3e−2sα̂(|φx|2 + |ψx|2 + |ηx|2)dxdt

is bounded from above by the left-hand side of (4.1).
To conclude, it suffices to apply the estimate of Proposition 2 to the equations satisfied by

(β1/2e−sα̂φ, β1/2e−sα̂ψ, β1/2e−sα̂η).
�

4.2 Null controllability of the linear system

Now, we are in position to prove the null controllability of the linear system (1.6). In the following,
consider the notation

Lr(ρ(t)(0, T );H) := {y ∈ Lr(0, T ;H) : ρ(t)y ∈ Lr(0, T ;H)}, r ∈ [1,+∞].

Let E be the space of quintuples (u, v, w, p, q) such that

• (u, v, w) ∈ L2(β23/2es(8α̌−7α̂)(0, T );H−1(0, L))3,

• p1γ ∈ L2(β−25/2es(7α̌−6α̂)(0, T );L2(0, L)),

• q1ω ∈ L2(β−221/2es(56α̌−55α̂)(0, T );L2(0, L)),

• (u, v, w) ∈ (L2(β−3/4es/2α̂(0, T );H1
0 (0, L)) ∩ L∞(β−3/4es/2α̂(0, T );L2(0, L)))3,
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• (ut − 1
4uxxx − 3wx, vt − 1

2vxxx − p1γ , wt + 1
2wxxx − q1ω) ∈ L2(β−3/2esα̂(0, T );H−1(0, L))3.

Actually, the space E becomes a Banach space endowed with its natural norm.
The following result establishes the null controllability of the linearized system (1.6).

Proposition 12 Let u0, v0, w0 ∈ L2(0, L) and assume that

(4.3) (f1, f2, f3) ∈ L2(β−3/2esα̂(0, T );H−1(0, L))3.

Then, there exist two controls p and q, such that the associated solution (u, v, w) to (1.6) satisfies
(u, v, w, p, q) ∈ E. In particular,

u(T, x) = v(T, x) = w(T, x) = 0 in (0, L).

Proof.
We follow an approach introduced in [11]. Let P0 be the space of triplets (φ, ψ, η) ∈ C4([0, T ]×

[0, L]) such that:

• φ(t, 0) = φ(t, 0) = φx(t, L) = φxxx(t, 0) = φxxx(t, L) = 0,

• ψ(t, 0) = ψ(t, 0) = ψx(t, 0) = ψxxx(t, 0) = ψxxx(t, L) = 0,

• η(t, 0) = η(t, 0) = ηx(t, 0) = ηxxx(t, L) = 0,

• −1
2ηxxx(t, 0) + 3φx(t, 0) = 0.

Notice that the observability inequality (4.2) holds for every (φ, ψ, η) ∈ P0 taking g1 = −φt+ 1
4φxxx,

g2 = −ψt − 1
2ψxxx, and g3 = −ηt − 1

2ηxxx + 3φx.
Let a : P0 × P0 → R be the bilinear form

a((φ̂, ψ̂, η̂), (φ, ψ, η)) =

∫
Q
β23e−2s(8α̌−7α̂)(−φ̂t + 1

4 φ̂xxx)x(−φt + 1
4φxxx)xdxdt

+

∫
Q
β23e−2s(8α̌−7α̂)(−ψ̂t − 1

2 ψ̂xxx)x(−ψt − 1
2ψxxx)xdxdt

+

∫
Q
β23e−2s(8α̌−7α̂)(−η̂t − 1

2 η̂xxx + 3φ̂x)x(−ηt − 1
2ηxxx + 3φx)xdxdt

+

∫ T

0

∫
γ
β25e−2s(7α̌−6α̂)ψ̂ψdxdt+

∫ T

0

∫
ω
β221e−2s(56α̌−55α̂)η̂ηdxdt,

and ` : P0 → R the linear form

`(φ, ψ, η) =

∫ L

0
(u0φ(0, x) + v0ψ(0, x) + w0η(0, x))dx

+

∫ T

0
(〈f1, φ〉+ 〈f2, ψ〉+ 〈f3, η〉)dt,

where 〈·, ·〉 denotes the duality product between H−1(0, L) and H1
0 (0, L).

Thanks to Proposition 11, the bilinear form above induces a norm ‖·‖a := a(·, ·)1/2 in P0. Call
P the completion of P0 with respect to ‖·‖a, which is a Hilbert space for the scalar product a(·, ·).
From assumption (4.3) and using Cauchy-Schwarz inequality, we readily check that

`(φ, ψ, η) ≤
(
‖β−3/2esα̂(f1, f2, f3)‖L2(0,T ;H−1(0,L)) + ‖(u0, v0, w0)‖L2(0,L)

)
‖(φ, ψ, η)‖a,
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for every (φ, ψ, η) ∈ P , from where we see that ` is bounded in P . Therefore, we deduce that there
exists a unique triplet (φ̂, ψ̂, η̂) ∈ P such that

(4.4) a((φ̂, ψ̂, η̂), (φ, ψ, η)) = `(φ, ψ, η), for all (φ, ψ, η) ∈ P.

We define (û, v̂, ŵ, p̂, q̂) by

• û := −β23e−2s(8α̌−7α̂)(−φ̂t + 1
4 φ̂xxx)xx,

• v̂ := −β23e−2s(8α̌−7α̂)(−ψ̂t − 1
2 ψ̂xxx)xx,

• ŵ := −β23e−2s(8α̌−7α̂)(−η̂t − 1
2 η̂xxx + 3φ̂x)xx,

• p̂ := −β25e−2s(7α̌−6α̂)ψ̂1γ ,

• q̂ := −β221e−2s(56α̌−55α̂)η̂1ω.

Let us show now that (û, v̂, ŵ, p̂, q̂) is the quintuple that we are looking for. First, let us prove
that (û, v̂, ŵ) is actually the solution of (1.6) with p = p̂ and q = q̂. Let (ũ, ṽ, w̃) be the (unique)
weak solution of (1.6) associated to p = p̂ and q = q̂. This triplet is also the unique solution by
transposition of (1.6), that is, it satisfies∫

Q

(
ũg1 + ṽg2 + w̃g3

)
dxdt =

∫ L

0
(u0φ(0, x) + v0ψ(0, x) + w0η(0, x))dx

+

∫ T

0
(〈f1, φ〉+ 〈f2, ψ〉+ 〈f3, η〉)dt

+

∫ T

0

∫
γ
p̂ψdxdt+

∫ T

0

∫
ω
q̂ηdxdt,

(4.5)

for all g1, g2, g3 ∈ L2(0, T ;H1
0 (0, L)), where (φ, ψ, η) is the solution of

(4.6)


−φt + 1

4φxxx = g1, in Q,
−ψt − 1

2ψxxx = g2, in Q,
−ηt − 1

2ηxxx = g3 − 3φx, in Q,
+ b.c.
φ(T, x) = ψ(T, x) = η(T, x) = 0, in (0, L).

Actually, one usually takes g1, g2, g3 ∈ L2(0, T ;L2(0, L)) in (4.5), but given the density of
H1

0 (0, L) in L2(0, L) (together with energy estimates for system (4.6)), these two ways of taking
the gi functions are equivalent. On the other hand, from (4.4), we see that

(4.7) a((φ̂, ψ̂, η̂), (φ, ψ, η)) = `(φ, ψ, η), for all (φ, ψ, η) ∈ P0,

where (φ̂, ψ̂, η̂) ∈ P is the unique solution of (4.4). Integrating by parts in space once, we find that

∫
Q

(
û(−φt + 1

4φxxx) + v̂(−ψt − 1
2ψxxx) + ŵ(−ηt − 1

2ηxxx + 3φx)
)
dxdt

=

∫ L

0
(u0φ(0, x) + v0ψ(0, x) + w0η(0, x))dx

+

∫ T

0
(〈f1, φ〉+ 〈f2, ψ〉+ 〈f3, η〉)dt

+

∫ T

0

∫
γ
p̂ψdxdt+

∫ T

0

∫
ω
q̂ηdxdt,

(4.8)
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for all (φ, ψ, η) ∈ P0. Using the density of P0 in P with respect to the norm ‖·‖a, we show that
(4.8) holds for all (φ, ψ, η) ∈ P . Therefore, the triplets (ũ, ṽ, w̃) and (û, v̂, ŵ) must coincide, and
(û, v̂, ŵ) is the solution of (1.6) associated to p̂ and q̂.

Now, notice that

∫ T

0
β−23e2s(8α̌−7α̂)‖û‖2H−1(0,L)dt =

∫ T

0
β−23e2s(8α̌−7α̂) sup

‖y‖
H1
0(0,L)

=1
〈û, y〉2dt

=

∫ T

0
β23e−2s(8α̌−7α̂) sup

‖y‖
H1
0(0,L)

=1
〈−(−φ̂t + 1

4 φ̂xxx)xx, y〉2dt

=

∫ T

0
β23e−2s(8α̌−7α̂) sup

‖y‖
H1
0(0,L)

=1

(∫ L

0
(−φ̂t + 1

4 φ̂xxx)xyx dx

)2

dt

≤
∫
Q
β23e−2s(8α̌−7α̂)|(−φ̂t + 1

4 φ̂xxx)x|2dxdt

≤ ‖(φ̂, ψ̂, η̂)‖2a < +∞.

Proceeding in the same way for v̂ and ŵ, we can prove that

(4.9)

∫ T

0
β−23e2s(8α̌−7α̂)

(
‖û‖2H−1(0,L) + ‖v̂‖2H−1(0,L) + ‖ŵ‖2H−1(0,L)

)
dt < +∞,

and, directly from the definition,

(4.10)

∫ T

0

∫
γ
β−25e2s(7α̌−6α̂)|p̂|2dxdt+

∫ T

0

∫
ω
β−221e2s(56α̌−55α̂)|q̂|2dxdt < +∞.

It only remains to check that

(u, v, w) ∈ (L2(β−3/4es/2α̂(0, T );H1
0 (0, L)) ∩ L∞(β−3/4es/2α̂(0, T );L2(0, L)))3.

To do this, let (ū, v̄, w̄) := β−3/4es/2α̂(û, v̂, ŵ). From (1.6), the triplet (ū, v̄, w̄) satisfies the system

(4.11)


ūt − 1

4 ūxxx − 3w̄x = β−3/4es/2α̂f1 + (β−3/4es/2α̂)tû, in Q,

v̄t + 1
2 v̄xxx = β−3/4es/2α̂(f2 + p̂1γ) + (β−3/4es/2α̂)tv̂, in Q,

w̄t + 1
2 w̄xxx = β−3/4es/2α̂(f3 + q̂1ω) + (β−3/4es/2α̂)tŵ, in Q,

+ b.c.

(ū(0, x), v̄(0, x), w̄(0, x)) = β−3/4(0)es/2α̂(0)(u0(x), v0(x), w0(x)) in (0, L).

Since
|(β−3/4es/2α̂)t| ≤ Cβ5/4es/2α̂ ≤ Cβ23/2es(8α̌−7α̂),

we have from (4.3), (4.9) and (4.10) that the right-hand sides of the previous systems belong to
L2(0, T,H−1(0, L)). Then, from Proposition 2, we conclude that

(ū, v̄, w̄) ∈
(
L2(0, T ;H1

0 (0, L)) ∩ L∞(0, T ;L2(0, L))
)3
,

which concludes the proof of Proposition 12.
�

A similar controllability result holds if, instead of (4.3), we assume that

(4.12) (f1, f2, f3) ∈ L1(β−1/2esα̂(0, T );L2(0, L))3.

Indeed, the proof is analogous to the one of Proposition 12 with a few changes:
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1. Take

`(φ, ψ, η) =

∫ L

0
(u0φ(0, x) + v0ψ(0, x) + w0η(0, x))dx+ 〈f1, φ〉+ 〈f2, ψ〉+ 〈f3, η〉

where 〈·, ·〉 denotes the duality product between L∞(0, T ;L2(0, L)) and L1(0, T ;L2(0, L)).
From (4.2), we check that ` is a linear bounded operator in P .

2. Call Ẽ the space of quintuples (u, v, w, p, q) that satisfy the first four points of the space E
above, and replacing the last condition by

(ut − 1
4uxxx − 3wx, vt − 1

2vxxx − p1γ , wt + 1
2wxxx − q1ω) ∈ L1(β−1/2esα̂(0, T );L2(0, L))3.

Then, we can establish the following controllability result for system (1.6).

Proposition 13 Let u0, v0, w0 ∈ L2(0, L) and assume that (4.12) holds. Then, there exist two
controls p and q, such that the associated solution (u, v, w) to (1.6) satisfies (u, v, w, p, q) ∈ Ẽ. In
particular,

u(T, x) = v(T, x) = w(T, x) = 0 in (0, L).

4.3 Local null controllability of the nonlinear system

In this section, we prove the local null controllability of the Hirota-Satsuma system (1.5), that
means Theorem 1, using a local inversion argument.

Proof.
Let F : E → L2(β−3/2esα̂(0, T );H−1(0, L)× L2(0, L))3 be an operator defined by

F(u, v, w, p, q) :=
(
(ut − 1

4uxxx − 3uux + 6vvx − 3wx, u(0, ·),
vt + 1

2vxxx + 3uvx − p1γ , v(0, ·),
wt + 1

2wxxx + 3uwx − q1ω, w(0, ·)
)
.

Recall that the space E is the Banach space defined at the beginning of Section 4.2.
We will check that the following two points are verified:

• F ′ is an operator of class C1 from E to L2(β−3/2esα̂(0, T );H−1(0, L))3.

• F ′(0) : E → L2(β−3/2esα̂(0, T );H−1(0, L))3 is surjective.

Then, since F(0) = 0, there exists δ > 0 such that if ‖(u0, v0, w0)‖L2(0,L) < δ, there exists
(u, v, w, p, q) ∈ E such that

F(u, v, w, p, q) = (0, u0, 0, v0, 0, w0).

Let us check the two points above.

• F ′ is an operator of class C1 from E to L2(β−3/2esα̂(0, T );H−1(0, L))3.
It is fairly clear to see that it suffices to prove that the bilinear terms in F are bounded. Indeed,

let y and z two functions in E. We have

‖yzx‖L2(β−3/2esα̂(0,T );H−1(0,L)) ≤ C‖y‖L2(β−3/4es/2α̂(0,T );H1
0 (0,L))‖z‖L∞(β−3/4es/2α̂(0,T );L2(0,L))

≤ C‖y‖E‖z‖E .

• F ′(0) : E → L2(β−3/2esα̂(0, T );H−1(0, L))3 is surjective.
Notice that

F ′(0) :=
(
(ut − 1

4uxxx − 3wx, u(0, ·), vt + 1
2vxxx − p1γ , v(0, ·), wt + 1

2wxxx − q1ω, w(0, ·)
)
,

which is surjective thanks to Proposition 12. This completes the proof of Theorem 1. �
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5 Final comments

We finish our paper with some comments and open problems.

• We have proven in Theorem 1 the local null controllability of the generalized HS system (1.5).
Given the strategy followed in this paper, we have done the best possible: to control the three-
equation system with two internal controls. This optimality is clear from the fact that when
we linearize we obtain two decoupled subsystems and consequently we need two controls to
achieve our results.

• A very nice open problem is to get the control of the generalized HS system (1.5) using
only one control input. To do that, the strategy used here is not good enough as explained
in the previous point. A possible strategy is the use of nonlinear arguments as the return
method as done for instance in [9, 10] for parabolic systems and in [23] for hyperbolic systems.
This strategy should be also useful to control the HS system (1.1) with only one control, for
instance: 

ut − 1
4uxxx = 3uux − 6vvx, (t, x) ∈ Q,

vt + 1
2vxxx = −3uvx + p1γ , (t, x) ∈ Q,

u(t, 0) = u(t, L) = 0, ux(t, 0) = 0, t ∈ (0, T ),
v(t, 0) = v(t, L) = 0, vx(t, L) = 0, t ∈ (0, T ),
u(0, x) = u0(x), v(0, x) = v0(x), x ∈ (0, L).

• Other interesting open problem it is to study the boundary controllability of the generalized
HS system, trying to get some results when some equations are not directly controlled.

References
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[3] J. Bergh and J. Löfström, Interpolation spaces. An introduction, Springer-Verlag, Berlin-
New York, 1976. Grundlehren der Mathematischen Wissenschaften, No. 223.

[4] R. A. Capistrano-Filho, F. A. Gallego, and A. F. Pazoto, Neumann boundary con-
trollability of the Gear-Grimshaw system with critical size restrictions on the spatial domain,
Z. Angew. Math. Phys., 67 (2016), pp. Art. 109, 36.

[5] , Boundary controllability of a nonlinear coupled system of two Korteweg–de Vries equa-
tions with critical size restrictions on the spatial domain, Math. Control Signals Systems, 29
(2017), pp. Art. 6, 37.

[6] R. A. Capistrano-Filho, A. F. Pazoto, and L. Rosier, Internal controllability of the
Korteweg–de Vries equation on a bounded domain, ESAIM Control Optim. Calc. Var., 21
(2015), pp. 1076–1107.

20
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