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Abstract

The generalized Hirota-Satsuma system consists of three coupled nonlinear Korteweg-de
Vries (KdV) equations. By using two distributed controls it is proven in this paper that the
local null controllability property holds when the system is posed on a bounded interval. First,
the system is linearized around the origin obtaining two decoupled subsystems of third order
dispersive equations. This linear system is controlled with two inputs, which is optimal. This
is done with a duality approach and some appropriate Carleman estimates. Then, by means of
an inverse function theorem, the local null controllability of the nonlinear system is proven.
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1 Introduction

In the eighties, Hirota and Satsuma introduced in [I5] the set of two coupled Korteweg-de Vries
(KdV) equations,

(1.1)

U — %uwm = Juu, — 6V,
1
V¢ + 5Vzze = — 33Uy,

describing the interaction of two long waves with different dispersion relations. They studied the
existence of soliton solutions and conserved quantities. Later, in [22] the same authors introduced
a new system, coupling now three KdV equations,

Up — %umm = 3uu, — 6vv, + 3wy,
1
(1.2) Ut + 5Vzzzr = —3Ug,
1
Wt + FWaze = —3UWy.

This set of equations was called in the literature the generalized Hirota-Satsuma (HS) system and
has attracted the attention of many researchers mainly interested in soliton or explicit solutions.
See for instance [13] 23] and the references therein.
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As far as we know, there is no studies of the control properties of this kind of coupled systems.
Thus, in this article the goal is to fill this gap focusing on the null controllability with distributed
controls. An important point is that we obtain our results on the control of this three-equation
system using only two control inputs.

Let us precise which system we will control. We can see that the first equation in is of
KdV type with a negative dispersive term whereas the two others have positive dispersive term.
Considering these facts, we propose to study equations on a spatial domain [0, L] with the
usual boundary conditions for KdV equations, as for instance in [19],

u(t,0) = u(t,L) =0, ugy(t,0) =0,
(1.3) v(t,0) =v(t,L) =0, vy(¢t,L) =0,
w(t,0) =w(t,L) =0, w,(t,L) =0,
and the initial conditions
(1.4) u(0,2) = up(z), v(0,z) =vo(x), w(0,x)=wo(x).

As mentioned previously, we consider here the internal control case. Thus, we study the following
system, with 7> 0 and Q = (0,7) x (0, L),

U — iuzm = 3uu, — 6vv, + 3wy, (t,z) € Q,

vy + %vmx = —3uv, + pl,, (t,z) € Q,

wt + %wzzx = —duw, + ql, (t7$) €Q,

(1.5) u(t,0) = u(t,L) =0, uy(t,0) =0, te(0,7),
v(t,0) =v(t,L) =0, v, (t, L) =0, t e (0,7),

w(t,0) =w(t,L) =0, w,(t,L) =0, te (0,7),

L u(0,2) = up(x), v(0,2) = vo(z), w(0,z) = wo(z), x € (0,L),

where p = p(t,x) and ¢ = ¢(t,x) are the distributed controls acting on two subdomains v and w
with v C (0, L) and either w = (a, L) or w = (0,a) for some 0 < a < L. From now on, we only
consider w = (a, L) but everything can be done in similar ways for the other case.

The control of dispersive equations is an active research field. The first results for single KdV
equations with internal controls were presented in [20], [21] where periodic domains were considered.
Also in this framework we found the paper [16]. More related to this paper we can cite [7] where
the authors study the internal control of a KdV equation on a bounded domain with the same kind
of boundary conditions than here. They use duality arguments and a Carleman estimate to prove
an observability inequality.

Regarding dispersive systems, we find papers dealing with the boundary controls of either KdV
systems on a bounded domain [3], 6, 9], [17] or KAV equations posed on a network [2], [§]. Concerning
the internal control of dispersive systems, the closest works are [I§] where Ingham theorems are used
to prove some observability inequalities for Boussinesq systems and [3] where a Carleman estimates
approach is used to get the null controllability of a linear system coupling a KdV equation with a
Schrédinger equation.

Summarizing the links with the existent literature, in this paper we follow the same methods
than in [7] and [3] to study the null controllability property of a dispersive system with less controls
than equations.

Let us go back to the control of system . The first step in our strategy is to linearize the



system ([1.5)) around the origin, getting the linear system

Ut — %u:cwz = f1 + 3wy, (t,m) €Q,
vt + %Ux:c:r: = fa +p]l'yv (t,l‘) €Q,
wt + %wxrz = f3 +qlu, (t,l‘) €Q,
(1.6) u(t,0) = u(t,L) =0, u,(t,0) =0, t e (0,7),
v(t,0) =v(t,L) =0, v (¢t, L) =0, te (0,7),
w(t,0) =w(t,L) =0, wy(t,L) =0, te (0,7),
u(0,2) = up(z), v(0,z) = vo(z), w(0,z) = wo(x), =€ (0,L),

where fi, fo and f3 will play later the role of the nonlinearities. In order to study the null
controllability of ([1.6) we apply a duality approach that leads us to prove that the solutions of the
adjoint system

( — ¢ + %be;m: =91, (t,l’) €Q,

—p — %¢xwz = 92, (t,l') € Q,

-t — %nxaw =93 — 3¢ax7 (t7$) € Qa

(1.7) ¢(t,0) = ¢(t, L) =0, ¢ (t, L) =0, te (0,7),
¢(t70) = w(tv L) =0, %( 70) =0, te (OvT)7

77(75’0) = n(tvL) =0, nx(t’o) =0, te (OaT)v

¢(Ta x) = (bT(w)? L/J(T, :B) = ¢T($)v n(Tv x) = nT($)7 S (OvL)7

satisfy an appropriate observability inequality. This is realized proving a Carleman estimate for
system where functions g1, g2 and g3 are useful to get information on the solutions of
when using duality arguments.

Finally, the last step in our strategy is to go back to the original nonlinear system by using an in-
verse function theorem. In this way we will get our main result, stating the local null controllability

of .

Theorem 1 Lety C (0,L) and w = (a, L), with a € (0, L). Assume that (ug,vo,wo) € [L*(0,L)]3.
Then, for every T' > 0 there exists 6 > 0 such that if ||(uo,vo, wo)ll[z2(0,0)3 < 9, there are controls
p € L%(0,T; L%*(v)) and q € L?(0,T; L?(w)) such that the solutions u,v,w € C([0,T]; L%(0,L)) N
L2(0,T; H'(0,L)) of satisfies

u(l,z) =v(T,z) =w(T,z) =0 in (0,L).

The organization of this paper is the following. We start giving in Section [2| the well-posedness
framework in which we work along this paper. Then, Section [3|is devoted to the proof of a Carleman
estimate that is used to prove an appropriate observability inequality. Section [d]contains the control
results for both the linear and nonlinear systems. Finally, we end this paper with some comments
and related open problems.

2 Well-posedness results

In this section, we give the functional framework and some well-possedness results for the KdV
equation. Additionaly, we present some regularity results for the system (|1.6)).



2.1 Functional spaces

We introduce the following functional spaces:

Xo:= L*(0,T; H2(0,L)), Xy:= L*(0,T;Hg(0,L)),

(2.1) Xo:=LY0,T; H*(0,L)), X;:=LY0,T;H3(0,L) N HZ0,L)),
and
(2.2) Yy := L*(0,T; L*(0, L)) N C([0, T|; H*(0, L)),

Yy = L?(0,T; H*(0,L)) n C([0,T]; H3(0, L)).

These spaces are equipped with their usual norms. Moreover, we define for each 6 € [0,1] the
interpolation spaces (see [4]):

Xo = (X0, X1)jg), Xo:=(Xo,X1)g and Yy:= (Y, Y1)
A sample of spaces that will be often used in the following is

X,y = L*0,T; H(0,L)), X,/4 = L*(0,T;L*(0, L)),
Y1/4 = L2(07T; Hl(oa L)) N C([O,T]v L2(07L))

2.2 Regularity results for a single equation

We first consider a single KdV equation with a source term:

Xt + Xzzz = 95 in Q,
(2‘3) X(tv 0) = X(t7 L) = X:v(tv L) =0, in (O,T),
x(0,2) = xo(z), in (0, L).

For this equation we have the following known results.

Proposition 2 [7, Section 2.2.2] If xo € L*(0,L) and g € G with G = X4 or G = X1/4, then
system (2.3)) admits a unique solution x € Y1/4. Moreover, there exists a constant C'> 0 such that

(2.4) Ixllvi,0 < Clllglle + [Ixoll2(0,z))-

Proposition 3 [1/, Section 2.5.1] If xo € H3(0,L) is such that x0(0) = xo(L) = x4(0) = 0 and
g € G with G = X1 or G = X1, then system (2.3) admits a unique solution x € Y. Moreover,
there exists a constant C > 0 such that

(2.5) Ixllvy < C(lglle + lIxolla30,1))-

Proposition 4 [T, Section 2.3.2] Let 0 € [1/4,1] and xo = 0. If g € G with G = Xy or G = Xy,
then system (2.3)) admits a unique solution x € Yy. Moreover, there exists a constant C > 0 such
that

(2.6) Ixlly, < Cllgllc-

Notice that the same results are valid for the (backward-in-time) adjoint equation

—Xt — dX:r:mc =9, in Qa
(2.7) x(t,0) = x(t, L) = xx(t,0) =0, in (0,T),
X(T,SU) = X0($)a in (Oa L)’



and the reverse-in-space equation,

Xt — dXx:ca: =9, in Q7
(28) X(t,O) = X(taL) = Xx(tao) =0, in (OaT)a
X(va) = X()(x), in (OaL)a

for any dispersive coefficient d > 0.

2.3 Regularity results for the linear system

We first consider the linear system ([1.6). Taking advantage of its cascade structure, notice that
we can apply the results for a single equation in order to get the solutions v and w (Proposition
for instance). Then, we can see the term 3w, as a source term in the equation satisfied by wu.
Therefore, we can easily obtain the following result.

PI‘OpOSitiOIl 5 Let (’U,(), o, @0) S [LZ(Ov L)]S: pE Lz(oa T; LQ(V)): q &< Lz(oa T; LQ(W))f and (fla f27 f3> S
G? with G = Xi4 or G = Xy4. Then, system (L.6) admits a unique solution (u,v,w) € (Y1/4)3.
Moreover, there exists a constant C' > 0 such that

(2.9) |[(u,v,w)(y, 2 <C H(anvova)H[B(o,L)}?’ + [(f1: f2, f3)ll s
/
+ Hp||L2(O,T;L2('y)) + ||QHL2(0,T;L2(W)))'

The regularity p € L?(0,T; L?(y)) and ¢ € L*(0,T; L?(w)) is enough to be sure that pl, and
ql,, belong to both L?(0,7; H-*(0, L)) and L'(0,T; L?(0,L)). Consequently they can be seen as
appropriate source terms in Proposition

This result can be applied to the adjoint system with appropriate functions g1, g, and gs.
To do that we only need to perform a change of variable in space x ~ L — x and time t = T — .

2.4 Regularity results for the nonlinear system

In this section we apply a fixed point argument in order to establish the well-posedness of the
nonlinear system ((1.5)). First of all, we prove the following lemma inspired from [19].

Lemma 6 Let y,z € L*(0,T; H'(0,L)). Then yz, € L'(0,T;L?*(0,L)) and the map (y,z) €
(L?(0,T; H'(0,L)))? — yz, € L*(0,T; L?(0, L)) is continuous.

Proof.

Let (y,2) and (7, 2) in (L?(0,T; H'(0, L)))?, and let us denote by K the norm of the embedding
H'(0,L) < L*°(0, L). We then have

T T
Y22 — G2zl L1 (0,522 (0,1)) S/o ”(y_g)ZxHLQ(O,L)dt-i-/O 19(2 = 2)zllp2(0,0)dt
T T
S/o ||y—?3||Loo(0,L)||Zoc||L2(o,L)dt+/0 19l oo 0,0) | (2 = 2)zll L2(0,1) A2

T T
S K <A ”y - gHHl(OvL)HZHHl(O’L)dt +/0 HgHHl(O,L)HZ — 2||H1(0,L)dt)

< K|y 2)llz20,180 0,02 1y — G5 2 = )|l (20,7551 (0,2)))2

which proves Lemma [6] [ |
We can now prove the following well-posedness result.



Proposition 7 Let L > 0 and T > 0. There exist ¢ > 0 and C > 0 such that for every
(0, w0, w0) € [I2(0, L)]*, p € I2(0,T; TA(7)), g € LX(0, T I*(w)), such that

[ (w0, vo, wo) 20,2 + 1Pl 20,0207y + llall 20,1020 < €

there exists a unique solution (u,v,w) € (Y1/4)3 of the nonlinear equation (1.5 that satisfies
[(u, v, w) | (v;, )2 < C(H(“OaUO:'U)O)”[L?(O,L)}?’ + Pl 20,1 L2(+)) + HQ||L2(O,T;L2(w))>-

Proof.
Let (UO7U07w0) € [LQ(Oa L)]37 pe L2(0a Ta LZ(’Y))’ VRS LZ(O)Ta LQ(W))7 such that

| (w0, vo, wo)llfr2(0,0y3 + P2 (0,02 () + el 20,702 (0)) < €

where ¢ will be chosen small enough later. Let (u,v,w) € (Y; /4)3 and consider the map & :
(Y1/4)* — (Y14)? defined by ®(u,v,w) = (@,9,w) where (@,,w) is the solution of the lincar
problem,

(U — %ﬂxm = 3uuy — 6vvy + 3wy, in Q,
By + $Uzpe = —3uvy + pla, in Q,
Wy + 3Wage = —3uwy + qly, in Q,
ﬂ(ta 0) = a(t7L> =0, ax(t70) =0, i ( )7
0(t,0) =v(t,L) =0, 0,(¢t, L) =0, n (0,7),
w(t,0) =w(t,L) =0, w,(¢t, L) =0, in (0,7),
L @(0,2) = up(x), 0(0,z) = vo(x), W(0,x) = wo(z), in (0,L).

By Proposition [5] we have

(2.10)

[@(w, v, w)ll (v, 3 = 1@ 0,0) [ (v, )2 < C(ll(uo»Uo,w0)||[L2(o,L)]3+H(3uua:—6vvx’—3@“)3:» —Suwg)|(x, 3
+ Pl 20,7522 (+)) + |!fJHL2(o,T;L2(w)))-
By Lemma [6], we obtain,
(211) 1@ (w,v,w)ll(y, 2 = (@, 0, @)l (v; )3 < C(H(UmUo,wo)H[Lz(o,L)P + (v, 0y, e
+ Pl 20,522 ()) + ||CJHL2(0,T;L2(w)))-
We also have, for any (u1,v1,w1) € (Y1,4)® and (ug, va, w2) € (Yy/4)%,
(212) H<I>(u17v1,w1) - @(UQ,UQ,U)Q)H y1/4

< C(”(Ulavlaw1)||(Y1/4)3 + ||(u2,vz,W2)||(Y1/4)3> [[(u1, v1, w1) = (u2, v2, w2l (v, )

Thus, if we restrict ® to a closed ball B(0, R) = {(u,v,w) € (Y;,4), [(u, v, )|y, )3 < R} where
R > 0 will be chosen later, we have the estimate,

[®(u, v, W)l (v, )3 < C(e+R?) and H(I)(Ul,'Ul,wl)—(I)(UQ,UQ,U}Q)H(YI/4)3 < 2CR)||(uy, v,wi)—(uz, v2, w2) | (v, )3

(Y1/4)

Then if we take R and e such that R < % and £ < %, we can apply the Banach fixed point

theorem and ® admits a unique fixed point, which ends the proof of Proposition
|



3 Carleman inequalities

This section is dedicated to Carleman estimates. First, we present a general estimate for a KdV
equation with observation in an interior domain. Then, we will prove a new Carleman estimate for
the whole adjoint system ((1.7]).

3.1 Carleman weights

Let wp = (ap,bo) C (0, L), and set ¢og = (ap + bo)/2. Consider the weight functions defined in [3],
namely for K1, Ko > 0, let

(3.1) fole) = KL= e R ) 1 () = s
and
(32 olt,2) 1= Elt)polo).

Notice that, for any K1, Ko > 0, we have

(3.3) ¢ >0in (0,T) x [0, L],
(3.4) oz >0 in (0,T) x ([0, L] \ @o),
(3.5) 0z(t,0) <0, @y (t, L) > 0in (0,7T).

Furthermore, K1 and K5 can be chosen such that

(3.6) Yz < 01in (0,7) x ([0, L] \ @o),
and
(3.7) 56p(t) > 55¢(t) in (0,7,

h p(t) := mi t, d p(t) := t,x).
where (1) ng(l)}}]w( ) and $(t) xgl[gﬁ]w( z)

Indeed, property (3.6] holds for

4
OO —
27 (bo — ap)?

Now, let us notice that
P(t) = o(t,co) = £(1),
and
¢(t) = max{p(t,0),¢(t, L)} = £(t) max{eo(0), po(L)},

since the extremum of the interval where the maximum is achieved depends on the location of cg.
Thus, if we call 2 2
C(K3,co) = max{l — e K20 1 — ¢~ K2(L=c0)™y

then, it suffices to take K; = (110 C(Ka,c))~! for (3.7) to hold.



3.2 Carleman estimate for a single KdV equation

In this section, we establish a Carleman estimate for the general backward in time KdV equation
of the following type, for v € R*:

Y¢ + VYzaz = G, in Qa
(3.8) y(t,0) =y(t,L) =0, in (0,7),
’ (ﬁ + l)yx(tvo) + (ﬁ - 1)ya:(t’L) =0, in (0>T)a
y(T,z) = yr(z), in (0,L).

To begin, we recall a Carleman estimate for the linear KdV equation obtained in [3|
Theorem 3.1] and [7, Proposition 3.1]. Their results are obtained in the case v > 0, but they can
easily be converted in the case v < 0 by using the change of variables x — L — x. We can rewrite
that estimate as follows.

Proposition 8 Let T' > 0 and wy C (0, L) as in Section . There exist Cy > 0, and so > 0 such
that for any g € L?(0,T; L?(0,L)), yr € L*(0,L), and s > sq, the solution y of (3.§) satisfies

39) [ [s€lel? + (66 lel? + (€ lyl2] e

T
< (o (/ e 2| g|2dadt + / / [y + Sﬂyach]edemdt) .
Q 0 wo

The idea is to set the path for the Carleman estimate for the adjoint system (1.7). To this
end, we will prove from estimate (3.9)) the following inequality with more regular right-hand side

in .

Proposition 9 Let T > 0 and wy C (0, L) as in Section . There exist Cy > 0, and sg > 0 such
that for any yr € L*(0,L), and s > so:
If g € L?(0,T; H/3(0, L)), then the solution y of (3.8)) satisfies

T
(3.10) /Q [58]yzel® + (€)*|yal” + (56)°[y|*le™ P dadt + /0 sE727 2|yl /a0 1yt
T ~
<C/ 3356_25“"\g|2dxdt—|—0/ 35_36_23“’HgHiIl/g(O,L)dt
Q 0 .
JrC// S|y |26 2506-62) g .
0 Jwo
If g € L*(0,T; H*/3(0, L)), then the solution y of satisfies
T ~
11 [ €l G el + (5 ole et [ 62
T ~
<0 [ sttt elglidrit +C [ 6 g

T
+ C// 85513|y‘26728(4¢73¢7)dwdt'
0 Jwo



Proof.
To begin the proof, notice that, from the properties of the weight function ¢, we can write from

().
(312) /Q[Sﬂya:m‘Q + (Sf)glya;\Q + (86)5’y|2}6728¢d$dt

T T
< Cy </ e”25%|g|2dadt + // sy e 2P dadt + / / s{]ym\Qe_Zs“bdxdt) .
Q 0 Jwo 0 Jwo

We will now apply a bootstrap argument in order to eliminate the local term of y,, appearing in
the right hand-side of (3.12)). Let
T ~
I:= / / sE€7 25 |y [P dadt.
0 Jwo

Since ¢ does not depend on space, we have

T
ISSA €672 |y 2

Let € (0,1] and ¢ > 0. Using an interpolation argument between the spaces H*"*(wp) and
L?(wp), together with Young’s inequality, we have

T
1<CA SEe2P |yl ST |1y | 2 ) gy

H2H1 (wo) 111 L2 (wo)

(3.13) T T
Ss/ S§3623¢Hy‘121[2+#(w())dt+05/ S€1+8/M6723[(1+2/M)¢*2/W’]HyH%Q(wO)dt.
0 0

The idea is now to remove the first term in the right-hand side of (3.13). We follow the same
arguments as in [3, [7, 14] and adapt a technique of bootstrap. We define y;(t,x) := 61(t)y(¢t, x)
with 0y (t) = s'/2¢1/2¢=%¢. Thus y; is solution of the system,

Y1t + VYizee = f1:= 019 + 01y in Q,

y1(t,0) =y1(¢t, L) =0, in (0,7),
(‘%| + 1)3/190(75 O) (| ‘ 1)y1m(t7L) = 0’ in (Oa T)v
y1(T,z) =0 in (0,L).

As (1] < Cs3/2¢5/2¢75? we have for C' > 0 and all s > s, that f; € L*(Q) = X/, and
(3.14) 1£1l172q) < C /Q sée 2% | g2 dxdt + C /Q $35e 725y | dadt.

Then, from Proposition E|, we have that y1 € Y7o, and, in particular,

(3.15) 112207 5200.0y) < CllAlIT2(0)-

Now we take y3(t, z) := 02(t)y(t, z) with O(t) = s1/2¢73/2e=5?. Then, y satisfies the system

Yot + VYouaa = fo 1= 029 + 0207 1 n (0,7) x (0, L),
yg(t 0) = yg(t L) =0 in (O,T),
(| | + 1)y2:(t,0) + (| | = Dy2.(t,L) =0, in (0,7),
y2(T,z) =0 in (0,L).



Notice that since |09:60, | < Cs, and if g € L2(0,T; H*(0, L)), we have that f» € L2(0,T; H*(0, L)).
From Proposition {f (with = X /5,,,/4), we deduce that

Y2 € }/1/2+H/4 = L2(07T7 H2+M(07L)) N LOO<O7T7 HlJﬁU«(O’L))’
and,

2 2
H?/QHYI/QW/4 B CHf2||L2(0,T;Hu(o,L))-
In particular,

T
(3.16) HyQH%Q(O,T;HQﬂL(O,L)) < CS/O 573672590”9”%{%0,@@5 + CSQHyl”%2(0,T;H2(O,L))'

Then we get, from (5T3), (B-15) and (3.10)
T 25p 2

(Ba1) [ sy, By
0

T
S C/O (36_3“.9”%1/‘(0,[/) + 835”Q”%2(07L)> e—2stpdt + C\/6235£5’y2€_2359d$dt.

By combining (3.17)), (3.13) and (3.12)), together with a good choice of e, we get Carleman

estimates (3.10)) and (3.11) taking p equal to 1/3 and 2/3, respectively.
|

3.3 Carleman estimate for the adjoint system

We now prove a Carleman estimate for the adjoint system ((1.7). For this, we will use two weight
functions. Given w; = (a1, b1), and 1 = (ag, b2) two proper subsets of (0, L), we define ) and ¢2
as in (3.1]) associated to the subsets w; and =1, respectively. Then, for i = 1,2, let

pilt,2) = ED) b a),
T
() = /Q €l + (56 4+ (€0l e ot + [ 5602
and
. T ~
L) = /Q 6l + (560"l + Oy e 0 dadt+ [ 56702 g .

The main result of this section is the following.

Theorem 10 Let w, and v subsets of (0,L) as in Theorem . Fiz w1 and v1 proper subsets of
w and v, respectively, such that w1 C w and 41 C . Then, there exist Co > 0, and sg > 0 such
that for any g1 € L*(0,T; H*3(0,L)), g2 € L*(0,T; H'/3(0, L)), and g3 € L*(0,T; H'/3(0, L)) and
s > sp, the solution (¢,1,n) of system satisfies

(3.18) 181/3(¢) + 13/3(1/’) + 171/3(77)
T T
< C//85§25€28(7¢26@2)’¢’2dxdt+0//557§221625(564[7155@1)’n‘2dxdt
0 Jy 0 Jw
T 3¢, —283 2 T 3¢ —25¢ 2
—|—C’/0 s°€e” 5¢1|’91‘|H2/3(0,L)dt+c/0 s°e” SmHgQHHl/s(o,L)dt

T
+C/O 575236728(&/}177@1)||g3||?'{1/3(07L)dt,

where 1 and @2 are the weight functions associated to wi and vy, respectively.
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Proof.
We begin applying Proposition |§| to the equation in (1.7 satisfied by 1, taking wg = 1, ¢ = 2,
v=1/2, and g = —go. From (3.10), we obtain

T
IZ5() < C /Q s*¢e=2%2| gy | *dadt + C /0 s€ 37222 ga 313 g 1 A

T
+C / / §P¢P e 2 (1227602) | 2t
0Jm

Using the properties of the weight functions, we have

T T
(3.19) I?/z(i/})éc/o 8356_25“”\\92\ip/S(o,L)dtJrc/o/ §P%0 e 2192 76%2) |y 2t
Y1

Now, for ¢ we apply the second inequality of Proposition |§| with wy = w1, ¢ = p1, v = —1/4, and
g = —gi1. In this way, from (3.11)) we get, after using the properties of the weight functions, the
estimate

T T
B2) R0 <C [ e g i+ C [ [ 6000 g
w1

Lastly, we apply Proposition |§| to the equation in ([1.7]) satisfied by n, with wy = w1, ¢ = ¢1,
v=1/2, and g = —g3 + 3¢,. From (3.10)), we obtain

T
I < C /Q e gy — 30, dadt +C [ 5670 g = 36 a1

T
—i—C// 855256_25(7%_6@1)\n\zd:ndt,
0 Jwi

from where we deduce
T ) T o
(3.21) I < C /0 €291 g3 2 gt + C /0 [ ety st + CIL, (6).
w1
Putting together inequalities (3.19)), (3.20) and (3.21]), we have
1 2 1 g 25¢ 2
(3:22) Ta(0) + Bs(0) + Tsl) < C | 52609 g1
T ) T ) T o
+C/ 6272 g2 /s L)dt—l—C/ €2 | g3l /s L)dt—l—C// 9207 28(102=602) 42 dp it
0 ’ 0 ’ 0 Jv1

T T
+ C// 355256723(7“‘3176@1)|n|2d$dt+ C’// 555136728(495173@1)‘(f)|2d$dt.
0 Jwy 0 Juwr

To finish the proof of estimate , it remains to absorb the last term of this inequality. The
idea is to use the coupling of the equation satisfied by 7 in system to express ¢ in terms of 7.
However, since the coupling is of first order, this cannot be done directly. Here, we will need the
fact that w “touches” the boundary of (0, L). Let us call

T
J::// 555136_25(4951_3@1)|¢|2dl'dt,
0 Jwy

11



and consider wo := (4, L), with § € (0, L) such that w; C wy C w, where all the inclusions are strict.
Since ¢(t, L) = 0, we have with Poincaré’s inequality that

T
J§C// 855136_28(4¢1_3¢1)|¢x|2dl‘dt.
0 Jwe

We concentrate on this term. Let 6 € C*°(]0, L]) a non-negative function such that 6(z) = 0 for
x €[0,L] \ w, and O(x) =1 for & € wy. Then, using the equation satisfied by 7 in system (1.7)), we
have

T
J<C / / 0(x)s°e13e 25421320 ¢ 12t
0 Jw

3.23 g p1-3¢
( ) _ % / / e(x)85§136—28(4§01—3§01)¢x (293 -+ Neza =+ 277t)d$dt
0 Jw
=: J1 + J2 + J3'

Let € > 0. We estimate each one of these terms. Using Young’s inequality, we have
(3.24) J < C. /Q sTEWem 2120 6o P dudt + eI 5(0).

For Jy, taking into account that ¢, (¢, L) = 0, we integrate by parts in space:

C T B N C T . .
J2 = _6/ / 6/(37)355136728(490173@1)¢xnxzdxdt - g / / 9($)85€13672S(4WI73¢I)¢wzn:cacdxdt7
0 Jw 0 Jw

where we use Young’s inequality to obtain

T
(325) Jo < CE/O/895256—25(8951—7901)|nzx|2d$dt_I_elgl/g(qb)‘

The third and last term is the most difficult one. We integrate by parts once in time and space
in the term J;. We get

:_// 513 —2s(4p1— 3@1)) b ﬁdmdt—f—// 5513 s(4p1— 3%01)¢t( ( ) )xd:bdt
=: J31 + J32.
For the first term, since
‘(513 s(4p1—3¢1) )t‘ < 085156_25(4¢1_3¢1),

we have that -
J31 < Cs/ / s7¢¥ e 2 BATO) 1 2t + ‘5[;/3(@-
0 Jw

For the second one, we use the fact that ¢; = %qﬁmx — g1 and integrate by parts in space. This
J32 _// 5513 —2s(4p1— Z‘}gol)((z)mx:B _491)( ( ) )Idl’dt
=— 3/0/855136_25(4¢1_3¢1)g1 (G(x)n)xdxdt
_ Q ’ 5013 —2s(431—3p1) Q g 5013 —2s(431—3p1)
S [ et bus (0()) , dudt + 5 [ 57€Me Guo(t, L)na(t, L)dt.
0 Jw

12



We observe the following:

T
._2//855136—25(4¢1—3¢1)gl(H(x)n)zdl‘dt
0 Jw

T T
<0 [ [ SerripPandtsc [ | T (g2 4 g, f?)dat
0 Jw 0 Jw

// 5513 —2s(4p1— 3Lp1)¢ x(e(x)n) dxdt

<d§/3( ¢) +C: // g2 e 2s(801=T1) (In]? + |n2|? + 122 |?) dzdt; and

T T
5, ETI T Gus(t, Lina(t, L)dt < li5(6) + Ce /0 §7€2e 2 BT ||

Going back to the expression of J3, we obtain

T
(326) S <C / $ce291 g1 [Pdadt + C- / WSRO0 |y 2, i+ Beld ().
Q 0

Let us gather what we have so far. Putting together estimates (3.24))-(3.26|) in (3.23)), we have

J§C/ 5356_28‘p1|gl|2d:vdt+/ §Te2e25(801=T01) | 0o 2 d it
Q Q

T
e /0 $OE0e BT |2, dt 4 5ell ().

We estimate now the local term of 7. Regarding H?(w) as the interpolation of the spaces
H7/3(w) and L?(w), and Young’s inequality, we obtain

o [ eresntenyi, a < [ Sepe T i
< 5I71/3(77)+C€/0 85752216723(56@755@1)||77||%2(w)dt
Then, finally, we get
J§C/ 335623‘p1|g1|2dazdt+/ sTe28e725(801=T01) | 0o 2 de it
Q Q
+ C: /OT/W §OTE2 o= 23(5691=5501) 1y 2 g g +ely(n) + 5elg3(9).

Going back to (3.22]), we deduce (3.18)) by choosing the biggest weight functions and ¢ sufficiently
small.
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4 Control results

In this section, we establish an observability inequality for the solutions of system ({1.7)) and deduce
a null controllability result for the linear system (|1.6). Moreover, we prove our main result getting
the local null controllability of system ([1.5]).

4.1 Observability inequality

The observability inequality will be deduced from Carleman estimate , but first, to be able
to deduce null controllability, we need to change the weight functions in such a way that they
do not vanish at t = 0. Before that, let us deduce a somewhat simpler version of the Carleman
estimate which will be useful in what follows.

Let

[ 1 2
M = max { xrél[aa?z] cpo(w), xfél[g?z] @0(95)}

and

. . 1 . 2
= min min X ; min X .
$m {xe[O,L] #o(2) 2€[0,1] ol )}

Notice that if we call ¢(t) := &(t)par and @(t) := &(t)pm, under the assumptions of Theorem
we can deduce from (3.18)) the following inequality:

Hdxdt

(41 [ SE el +
T T
Sc//85§25628(7@6@)’¢’2dwdt+c//857§221625(56@55@)|7]|2dmdt
0 Jy 0 Jw

T
+ C/O 375236_28(&0_7@) (H91H§12/3(07L) + HgQH%ﬂ/S(o,L) =+ ||93H?{1/3(07L))dt-
Now, let 3 € C1(0,T) be defined by

4

—, ift € (0,7/2),
s =y 1 if ¢t € [T/2,T
T —1) ifte[T/2,T),

and let us call
6() = B(H)pnr and G(t) = B(t)pm:
Furthermore, we will assume also that g1, g2, and g3 in system belong to L2(0,T; H}(0, L)).
This will make the analysis of the controllability of system simpler later on.

Proposition 11 Let s be fized such that Carleman estimate (3.18|) holds. Assume that g1, 92,93 €
L%(0,T; HL(0,L)). Then, every solution (¢,%,n) of system (1.7)) satisfies

L
(4.2) /0 (1600, 2)* + (0, 2)* + (0, ) [*)dx +/Q/B3e25“(|¢x\2 + [l + 0o [*)dadt
+ ||/81/2€78d¢”%OO(O,T;LQ(O,L)) + ||/61/2678d1/)H%OO(O,T;LQ(O,L)) + ”51/2678&77H%oo(o,T;L?(o,L))

T T
<C / / 6256—28(764—6&) ‘1/}|2d$dt +C / / 62216_28(56d_55d) |’f]|2dl'dt
0 0% 0 w

e /Q 5736256578 (1), 2 + [(g)al? + |(g3)e ) drdt.
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Proof.

Let A € C([0,T]) be a non-negative function such that A(t) = 1 if ¢ < T/2 and A(t) = 0 if
t > 3T /4. Then, from the system satisfied by (A¢p, Ay, An) and the estimate in Proposition |2 we
deduce that

H>‘<t)(¢7¢7 )H [L2( OTHl 0,L))]3 + ||)‘(t)(¢awan)H?LOO(O,T;H(O,L))P
< CH)‘(t)(gla927g3)||[2L2(0,T;L2(0,L))]3 + CIN @) (8, 0 020122 (0.L))2

from where

(¢, w,ﬁ)\\?Lz(o,T/g;Hé(o,L))}s + [1(6(0), 9(0), 7 (0)IF2(0,1.2
< Cll(91, 92 93) P20 37 a:22 (0. + CN D 0 Iz /2,37 4:02 (0.0

Since e72%% > C > 0 in (T//2,3T/4), the last term of this estimate can be bounded from above
by the left-hand side of (4.1). Thus, we get

L T/2 L A
/O (B(0)[2 + [(0)]2 + [n(0)?)dx + / /O B3¢~ 2 + [o? + [no|?)ddt
T T
S C/ /525628(7d6d)¢‘2d$dt+0/ /5221625(56d55d)‘ﬁ|2d$dt
0 o7 0 w
" C/Q5236‘2“85“‘7‘3‘><|<g1>x|2 T l(g2)e? + I(g3) 2)dadt,

where we have also used the fact that £ = 5 in (T/2,T). Actually, using this last property again,
we see that

/T } / 3250 (|2 + (142 + 1|2 et

is bounded from above by the left-hand side of (4.1)).
To conclude, it suffices to apply the estimate of Proposition [2] to the equations satisfied by

(51/26_5d¢> 51/26_5d1[), ﬁl/ze_S&T])-
|

4.2 Null controllability of the linear system

Now, we are in position to prove the null controllability of the linear system (1.6]). In the following,
consider the notation

L7 (p(6)(0, T); H) = {y € L"(0, T5 H) : plt)y € L'(0,T; H)}, v € [1, +ox].
Let E be the space of quintuples (u, v, w, p,q) such that
o (u,v,w) € [LP(B*/2e5CaT0(0, T); HH(0, L))P?,
o pl, € L2(3~2/25(76-63) (0 T'); L2(0, L)),
o gl € L2(B221/2¢5(56a-550) () T): [2(0, L)),

o (u,0,w) € [L*(B73/1e*/24(0,T); Hg (0, L)) N L= (B~*/1e*/2%(0, T); L*(0, L))]%,
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b (Ut - %chca: — 3wy, vt — %szx —P]lw wy + %wxxac - q]lw) € [L2(/6_3/268&(07T); H_l(oa L))]g

Actually, the space E becomes a Banach space endowed with its natural norm.
The following result establishes the null controllability of the linearized system (1.6]).

Proposition 12 Let ug,vo, wo € L?*(0, L) and assume that
(43) (f17 f27 f3) € [L2(5_3/265d(07 T)7 H_1(07 L))]3

Then, there exist two controls p and q, such that the associated solution (u,v,w) to (L.6|) satisfies
(u,v,w,p,q) € E. In particular,

w(T,z) =v(T,z) =w(T,z) =0 in (0,L).
Proof.

We follow an approach introduced in [12]. Let Py be the space of triplets (¢,,n) € [C*(]0, T] x
[0, L])]? such that:

b ¢(t70) = ¢(ta L) = ¢w(taL) = ¢mm(t70) = ¢mm(ta L) =0,
b w(tv 0) = 1/J(t7 L) = ww(t70) = wacacm(ta 0) = wac:cz(ta L) =0,
b n(tv 0) = 77(75’ L) = Ux(t’o) = nxwx(t’ L) =0,
o —10uza(t,0) + 3¢4(t,0) = 0.
Notice that the observability inequality (4.2)) holds for every (¢,,n) € Py taking g1 = —¢¢+ %dh:m,
g2 = — — %wwxxa and g3 = —n — %nzxx + 3¢z
Let a: Py x Py — R be the bilinear form
CL((QE, 1&7 ﬁ)’ ((;57 71[}7 77)) - /QB236_25(8d_7&)(_¢§t + %&xzx)x(_gbt + %gbfmfl’)xdxdt
+ / /8236_25(86&_7&)(_72)1‘/ - %"&xmy)x(_qﬁt - %wzx:r)xd$dt
Q

n / B2e=25(86-T4) (L, _ Nes + 302 )e(—1t — Nae + 30y dxdt
Q

T T
+/ //6256—28(7d—6d)¢wdxdt+/ //32216_28(56d_55d)77nd$dt,
0 Jy 0 Juw

and ¢ : Py — R the linear form
L
6,01 = [ (u06(0.2) + 00 (0,) + won(0,2))da
0

T
T / (1 6) + (st} + (faom) e,
0

where (-, -) denotes the duality product between H~1(0, L) and H}(0, L).

Thanks to Proposition |11} the bilinear form above induces a norm ||-||, := a(-,-)'/? in Py. Call
P the completion of Py with respect to ||-||q, which is a Hilbert space for the scalar product a(-, ).
From assumption and using Cauchy-Schwarz inequality, we readily check that

Uo,9,n) < (“5_3/268d(f17f27f3)H[L2(O,T;H*1(O,L))]3 + H(ananwO)H[LE(o,L)]S) (%, )|l
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for every (¢,v,n) € P, from where we see that ¢ is bounded in P. Therefore, we deduce that there
exists a unique triplet (¢, v, 7n) € P such that

(4.4) a((9,.0), (6.9, m) = €(¢,%,m),  for all (¢,4,1) € P
We define (u, 0,0, p,q) by
o = —6236728(85*77&)(—(2515 + i(lgmm)m,
o 0= — B 26Ty Lih ),
o )= —ﬁ236_25(85‘_m)(—ﬁt - %'f/xzx + 3(2)%)”7

o pi= _l8256725(7617602)1&]177

5221 c—25(566-554)

® §:=— Nl .

Let us show now that (4,0, w, p, §) is the quintuple that we are looking for. First, let us prove
that (4,0, w) is actually the solution of with p = p and ¢ = §. Let (@, 0,@) be the (unique)
weak solution of associated to p = p and ¢ = . This triplet is also the unique solution by
transposition of , that is, it satisfies

L
/Q (ag1 + vg2 + wy3)dudt = /0 (w09 (0, z) +voyp(0, z) + won(0, x))dz

T
(4.5) + /0 ((f1r @)+ (ford) + (favm)) e

T T
+ / / pbdadt + / / gndadt,
0 ¥ 0 w

for all (g1, g2, 93) € [L2(0,T; H}(0, L))]3, where (¢,1,7) is the solution of

( _¢t + %d)mcx =91, in Qa
—y — %wmrm = g2, in @,
- — %nxoc:c = g3 — 304, in Q,
(4.6) o(t,0) =o(t, L) =0, ¢(t,L) =0, te(0,T),
(7 ) (t L)—O,l/}x(,O):O, tE(O,T),
( ) ) ( ) 0, 772( O)ZOa te (OaT)’
L (T, z) =y(T,z) =n(T,z) =0, in (0,L).

Actually, one usually takes (g1, 92,93) € [L*(0,7;L?(0,L))]* in (4.5)), but given the density of
H(0,L) in L%(0,L) (together with energy estimates for system lb these two ways of taking
the g; functions are equivalent. On the other hand, from (4.4)), we see that

(4.7) a((, 9, 1), (6,90, 1)) = L(b,b,m), for all (¢,4,n) € Py,

where ((ﬁ, 1/3, 7)) € P is the unique solution of (4.4). Integrating by parts in space once, we find that
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4 (a(_ét + %(z)zx:v) + @(_wt - %T/me) + w(_nt - %nacacm + 3¢$))d$dt
L
— [ (w0 0.2) + (0. 2) + won(0.2))da

T
4 / (1 6) + (for ) + (fosm)) et
0

T T
—i—/ /ﬁ¢dmdt+/ /(jndxdt,
0 Jy 0 Jw

for all (¢,%,n) € Py. Using the density of Py in P with respect to the norm |||, we show that
holds for all (¢,1,n) € P. Therefore, the triplets (u,?,w) and (4, 0,w) must coincide, and
(G, v,w) is the solution of associated to p and g.

Now, notice that

T T
[ R T gyt = [ 5T (i
0 0

”yHHé(O,L):l

T
:/ 5236—23(804—76!) sup <*(*¢t+%¢mx)m,y>2dt

0 ”yHHé(O’L):l

T o L X 2
:/ [2e=25(86-74) gy </ (—qﬁt—l—}l%m)xyxd:n) dt
0

0 9l g2 0,0 =1
§/5236—2s(8a—7a)|(¢§t+}1¢3mx)x|2dxdt
Q

S ||(¢71/}7ﬁ)||2 < +00.

Proceeding in the same way for © and w, we can prove that

T
(4.9) /0 BAETTO (a1 o £y + 101510,y + @111 (0,1)) dt < oo,

and, directly from the definition,

(410) /T/6—25623(7d—6d)|ﬁ|2dxdt+/T/5—221623(5654—55&)qA|2d$dt < 400.
0 ¥ 0 w
It only remains to check that
(u,v,w) € [LA(B~3/4e¥/2%(0,T); Hy (0, L)) N L(8~**e*/*%(0,T); L*(0, L))]*.
To do this, let (7,7, w) := B~%/*e*/?%(q1, 0, ). From , the triplet (u,v,w) satisfies the system

( (T %ﬁmzm - 311—)93 = /873/468/201.]61 + (673/468/2&)15'&7 in Q:
Ut + S0awa = B3/ /2% (fo + plly) + (B73/1e/29) b, in Q,
wy + %wzx:p = B_3/4es/2d(f3 + qA]lw) + (ﬁ_3/4es/2d)twa in Q)
(4.11) a(t,0) = u(t,L) =0, u,(¢,0) =0, te(0,7T),
o(t,0) =v(t,L) =0, v,(t, L) = 0, te(0,7),
w(t,0) = w(t,L) =0, w(t,L) =0, te (0,7T),
| (a(0,2),9(0,2), w(0,z)) = B3/4(0)e%/2¢0) (ug(z), vo(2), wo(z)), in (0, L).
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Since
|(5_3/4€S/2&)t’ < 055/465/2@ < C’B23/268(86‘_76‘),

we have from (4.3), (4.9) and (4.10) that the right-hand sides of the previous systems belong to
L?(0,T,H~'(0,L)). Then, from Proposition [2| we conclude that

(@, v, @) € [L*(0,T; Hy (0, L)) N L®(0,T; L*(0, L))]°,
which concludes the proof of Proposition
A similar controllability result holds if, instead of , we assume that
(4.12) (f1, fa, f3) € [LY(B/2e*(0,T); (0, L))]*.
Indeed, the proof is analogous to the one of Proposition [12| with a few changes:

1. Take

L
U, h,m) = /0 (u0¢(0, ) + v09p(0, 2) + won(0, 2))dz + (f1,¢) + (f2, ¥) + (f3,m)

where (-,-) denotes the duality product between L°°(0,T;L?(0,L)) and L(0,T;L?(0,L)).
From (4.2), we check that ¢ is a linear bounded operator in P.

2. Call E the space of quintuples (u,v,w,p,q) that satisfy the first four points of the space F
above, and replacing the last condition by

(ut - %uzxx — 3wy, vt — %Ua::cz - p]l'yu wy + %wxzx - q]lw) € [Ll(ﬂ_1/265d(07T); L2(07L))]3
Then, we can establish the following controllability result for system ([1.6]).

Proposition 13 Let (ug, vy, wo) € [L(0, L)]? and assume that holds. Then, there exist two
controls p and q, such that the associated solution (u,v,w) to (1.6) satisfies (u,v,w,p,q) € E. In
particular,

uw(T,z) =v(T,z) =w(T,z) =0 n (0,L).

4.3 Local null controllability of the nonlinear system

In this section, we prove the local null controllability of the Hirota-Satsuma system (1.5, that
means Theorem (1], using a local inversion argument. More precisely, we apply the following result

(see [1).

Theorem 14 Let By and B be two Banach spaces and let F : By — Bs satisfy F € C1(By;Bs).
Assume that by € By, F(b1) = by and that F'(by) : By — By is surjective. Then, there exists 6 > 0
such that, for every b € By satisfying ||b' — ba||g, < 0, there exists a solution of the equation

Fb) =V, bebB.
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Proof of Theorem [1l
Let F : E — [L*(873/2e5%(0,T); H~'(0, L) x L?(0, L))]? be an operator defined by

F(u,v,w,p,q) ::((ut — %umx — Buuy + 6vv, — 3wy, u(0, ),
(%3 + %Uxxx + S’Ufo - p]l’ya U(O> ')7
wy + %wxzx + 3uw, — ql,, U)(O, ))

Recall that the space E is the Banach space defined at the beginning of Section
We will check that the following two points are verified:

e F'is an operator of class C! from E to [L?(8~3/2¢*%(0,T); H~(0, L))]>.
o F(0): E— [L2(5~3/2¢5%(0,T); H~'(0, L) x L*(0, L))]? is surjective.

Then, since F(0) = 0, from Theorem |14 with B, := E, and By := [L?(3~%/2¢5%(0, T); H~(0, L) x
L?(0,L))]*, there exists 6 > 0 such that if ||(uo,vo, wo)||[2(0,Lys < 9, there exists (u,v,w,p,q) € E
such that

F(u,v,w,p,q) = (0,ug,0,v0,0,wp).

Let us check the two points above.

e F' is an operator of class C! from E to [L?(673/2¢5(0,T); H~1(0, L) x L*(0, L))]>.
It is fairly clear to see that it suffices to prove that the bilinear terms in F are bounded. Indeed,
let y and z two functions in £. We have

||Z/Zz||L2(,8—3/Qes&(o,T);H—l(o,L)) < CHy||L2(5—3/463/2‘3‘(0,T);H5(O,L))HZ‘|L°°(ﬁ—3/4es/2&(O,T);LQ(O,L))
< Cllyllellzlle-

o F/(0): B — [L*(B73/2e*%(0,T); H-'(0, L) x L?(0, L))]? is surjective.
Notice that

.F/(O) = ((ut - %ua:rz - 3wxau(07 '),’Ut + %’Uzmx - p]l’ya ’U(O, ‘),’U)t + %wmzm —qly,, w(oa ))7

which is surjective thanks to Proposition This completes the proof of Theorem |

5 Final comments

We finish our paper with some comments and open problems.

e We have proven in T heorem the local null controllability of the generalized HS system .
Given the strategy followed in this paper, we have done the best possible: to control the three-
equation system with two internal controls. This optimality is clear from the fact that when
we linearize we obtain two decoupled subsystems and consequently we need two controls to
achieve our results.

e A very nice open problem is to get the control of the generalized HS system using only
one control input. To do that, the strategy used here is not good enough as explained in the
previous point. A possible strategy is the use of nonlinear arguments as the return method
as done for instance in [I0, [I1] for parabolic systems and in [24] for hyperbolic systems.
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This strategy should be also useful to control the HS system (1.1) with only one control, for

instance:
Up — Fgzs = 3uty — 6Vv,, (t,z) € Q,
vt + %'Ua:mz = —3uv, +p]l'ya ( ) € Q?
u(t,0) = u(t,L) =0, uy(t,0) =0, te(0,7),
’U(t,O) = ’U(taL) =0, U:L"(taL) =0, te (07 )
u(0,z) = up(x), v(0,x) = vo(x), € (0,L).

e Other interesting open problem it is to study the boundary controllability of the generalized

HS system, trying to get some results when some equations are not directly controlled.
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