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Control System
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Korteweg-de Vries equation 1895

Function u = u(t, x) models for a time t the amplitude of the water wave at
position x. The nonlinear dispersive partial differential equation, named
Korteweg-de Vries equation and abbreviated as KdV, describes approximately
long waves in water of relatively shallow depth

ut + uxxx + uux = 0, x ∈ R, t ∈ R
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Korteweg-de Vries equation on a bounded domain

On a bounded interval, the extra term ux should be incorporated in the
equation in order to obtain an appropriate model for water waves in a uniform
channel when coordinates x is taken with respect to a fixed frame. Thus, for
L > 0 the equation considered here is

ut + ux + uxxx + uux = 0, x ∈ [0,L], t ≥ 0

+ Boundary conditions, for instance posed on

u(t, 0) = u(t,L) = ux(t,L) = 0, t ≥ 0

+ Initial data
u(0, x) = u0 ∈ L2(0,L)
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Asymptotic behaviour

We are interested in the long-time behavior of the energy

E(t) =

∫ L

0
|u(t, x)|2 dx.

More precisely we want to prove the exponential decay of E(t) as t goes to
infinity.

E(t) ≤ Ce−ωtE(0), ∀t ∈ [0,∞)

Let us start considering the linear equation

ut + ux + uxxx = 0,
u(t, 0) = u(t,L) = ux(t,L) = 0,
u(0, ·) = u0
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Asymptotic behaviour

By performing integration by parts in the equation∫ L

0
(ut + ux + uxxx)u dx = 0

we get

d
dt

∫ L

0
|u(t, x)|2 dx = −|ux(t, 0)|2 ≤ 0.

The energy is non-increasing, but is it strictly decreasing?

Remember we are looking for an exponential decay.
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Solutions with constant energy

The energy is not decreasing. In fact there are solutions with constant energy!

For instance, if L = 2π and

u0 = (1− cos(x)),

the solution of the linear KdV ut + ux + uxxx = 0 is stationary

u(t, x) = (1− cos(x))

which satisfies ux(t, 0) = 0 for any t ≥ 0 and then

Ė(t) =
d
dt

∫ L

0
|u(t, x)|2dx = 0
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Critical domains

For the linear KdV equation there exist constant energy solutions if and only if

L ∈ N :=

{
2π

√
k2 + k`+ `2

3
; k, ` ∈ N∗

}
.

This phenomena is linked to the controllability of a linear KdV from the
boundary.

(Controllability)
Take a look at the linear control system

ut + ux + uxxx = 0
u(t, 0) = u(t,L) = 0, ux(t,L) = κ(t),
u(0, ·) = 0
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(Controllability)

Linear KdV is controllable⇔ the following map is onto

B : κ ∈ L2(0,T) 7→ u(T, ·) ∈ L2(0,L) .

The map B is onto⇔ the following inequality holds

(Obs) ‖B∗(φT)‖L2(0,T) ≥ C‖φT‖L2(0,L)

The map B is onto⇔ its adjoint system is observable, i.e.

(Obs) ‖φx(t,L)‖L2(0,T) ≥ C‖φT‖L2(0,L)

where φ = φ(t, x) satisfies,

(Adj)


φt + φx + φxxx = 0,
φ(t, 0) = φ(t,L) = φx(t, 0) = 0,
φ(T, ·) = φT .
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(Controllability)

Theorem (Rosier 97)
The linear KdV system is controllable iff L /∈ N .

If L /∈ N , the nonlinear system (KdV) is locally exactly controllable.

Theorem (Coron-Crépeau 04, EC 07, EC-Crépeau 09)
Let L ∈ N , there exists TL ≥ 0 such that (KdV) is locally exactly controllable
in L2(0,L) if T ≥ TL.
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Back to stabilization
We will design some feedback control laws in order to get

E(t) ≤ Ce−ωtE(0), ∀t ≥ 0.

Internal control:

ut + ux + uxxx + uux = F(u), u(0, ·) = u0,
u(t, 0) = 0, u(t,L) = 0, ux(t,L) = 0,

Boundary control from the right:

ut + ux + uxxx + uux = 0, u(0, ·) = u0,
u(t, 0) = 0, u(t,L) = 0, ux(t,L) = Fω(u),

Boundary control from the left:

ut + ux + uxxx + uux = 0, u(0, ·) = u0,
u(t, 0) = Kω(u), u(t,L) = 0, ux(t,L) = 0,
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Internal Control
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Internal Control
Equation with internal control

ut + ux + uxxx + uux = F

We consider a feedback law in the form

F(u) = −au

where a ∈ L∞(0,L;R+) satisfies{
a(x) ≥ a0 > 0, ∀x ∈ O,
where O is nonempty open subset of (0,L).

Closed-loop system

ut + ux + uxxx + a(x)u + uux = 0,
u(t, 0) = u(t,L) = ux(t,L) = 0,
u(0, ·) = u0(·).
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Internal Control - Linear

A natural strategy is to consider first the linearized equation around the origin

ut + ux + uxxx + au = 0,
u(t, 0) = u(t,L) = ux(t,L) = 0,
u(0, ·) = u0(·),

(1)

and prove the exponential decay of its solutions.

Theorem (Perla-Vasconcellos-Zuazua 02)
Let L > 0 and a = a(x) as before. There exist C, ω > 0:

‖u(t, ·)‖L2(0,L) ≤ Ce−ωt‖u0‖L2(0,L), ∀t ≥ 0

for any solution of (1) with u0 ∈ L2(0,L).
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Internal Control - Nonlinear

Nonlinear system

ut + ux + uxxx + au + uux = 0,
u(t, 0) = u(t,L) = ux(t,L) = 0,
u(0, ·) = u0(·)

(2)

Using a perturbative argument, a local version of this theorem is proven by
adding a smallness condition on the initial data.

Theorem (Perla-Vasconcellos-Zuazua 02)
Let L > 0 and a = a(x) as before. There exist C, r > 0 and ω > 0 such that

‖u(t, ·)‖L2(0,L) ≤ Ce−ωt‖u0‖L2(0,L), ∀t ≥ 0

for any solution of (2) with ‖u0‖L2(0,L) ≤ r.
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Internal Control - Semiglobal
Nonlinear system

ut + ux + uxxx + au + uux = 0,
u(t, 0) = u(t,L) = ux(t,L) = 0,
u(0, ·) = u0(·).

(3)

Theorem (Pazoto 05)
Let L > 0, a = a(x) as before and R > 0. There exist C = C(R) > 0 and
ω = ω(R) > 0 such that

‖u(t, ·)‖L2(0,L) ≤ Ce−ωt‖u0‖L2(0,L), ∀t ≥ 0

for any solution of (3) with ‖u0‖L2(0,L) ≤ R.

This result was proved in [P-V-Z 02] by assuming

∃δ > 0, (0, δ) ∪ (L− δ, L) ⊂ O

which has been removed by Pazoto.
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Linear System on a noncritical case
No damping (a(x) = 0) and L /∈ N .
We have the observability inequality for T = 1

∀u0 ∈ L2(0,L), C‖ux(·, 0)‖L2(0,T) ≥ ‖u0‖L2(0,L)

Integrating with respect to time

d
dt

∫ L

0
|u(t, x)|2 dx = −|ux(t, 0)|2

from t = 0 to t = 1 we get∫ L

0
|u(1, x)|2 dx−

∫ L

0
|u0(x)|2 dx

= −
∫ 1

0
|ux(s, 0)|2 ds ≤ − 1

C2

∫ L

0
|u0(x)|2 dx,

that implies ∫ L

0
|u(1, x)|2 dx ≤ C2 − 1

C2

∫ L

0
|u0(x)|2 dx.
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Linear System on a noncritical case

Of course we also have∫ L

0
|u(t + 1, x)|2 dx ≤ C2 − 1

C2

∫ L

0
|u(t, x)|2 dx,

that implies the exponential decay.

Indeed, let k ≤ t ≤ k + 1. Denoting γ := C2−1
C2 < 1, we have

E(t) ≤ E(k) ≤ γE(k − 1) ≤ γ2E(k − 2) ≤ . . .

≤ γkE(0) =
γk+1

γ
E(0) =

1
γ

e(k+1) ln(γ)E(0)

≤ 1
γ

e−t| ln(γ)|E(0)
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Linear System on a critical case
With damping a(x)u active in O and L ∈ N . From∫ L

0
(ut + ux + uxxx + au)u dx = 0

we get

d
ds

∫ L

0
|u(s, x)|2 dx = −|ux(s, 0)|2 −

∫ L

0
a(x)|u(s, x)|2 dx ≤ 0

and then by integrating on (0, 1) we obtain∫ L

0
|u(1, x)|2 dx−

∫ L

0
|u0(x)|2 dx

= −
∫ 1

0
|ux(s, 0)|2 ds−

∫ 1

0

∫ L

0
a(x)|u(s, x)|2 dxds.
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Linear System on a critical case

∫ L

0
|u(1, x)|2 dx−

∫ L

0
|u0(x)|2 dx

= −
∫ 1

0
|ux(s, 0)|2 ds−

∫ 1

0

∫ L

0
a(x)|u(s, x)|2 dxds.

(
same proof as before runs if we are able to prove ∃C > 0:

≤ −C2
∫ L

0
|u0(x)|2 dx

)
Let us prove that for any T,L > 0, there exists C > 0:

∀u0 ∈ L2(0,L), ‖ux(·, 0)‖2
L2(0,T) +

∫ T

0

∫ L

0
a(x)|u(t, x)|2 dxdt

≥ C2‖u0‖2
L2(0,L)
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Linear System on a critical case
By integrating by parts∫ L

0
(ut + ux + uxxx + au)(T − t)u dx = 0

we obtain

‖u0‖2
L2(0,L) ≤

1
T
‖u‖2

L2(0,T;L2(0,L))

+ ‖ux(·, 0)‖2
L2(0,T) + 2

∫ T

0

∫ L

0
a(x)|u(t, x)|2 dxdt

and therefore we will be done if we prove that there exists a constant K > 0
such that

K‖u‖2
L2(0,T;L2(0,L)) ≤ ‖ux(·, 0)‖2

L2(0,T)

+

∫ T

0

∫ L

0
a(x)|u(t, x)|2 dxdt
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Linear System on a critical case
We proceed by contradiction by supposing that

∀K > 0, ∃ u = u(t, x), such that
K‖u‖2

L2(0,T;L2(0,L)) > ‖ux(·, 0)‖2
L2(0,T) +

∫ T
0

∫ L
0 a(x)|u(t, x)|2 dxdt

By using this successively with K = 1/n, we obtain a sequence {un}n∈N of
solutions such that ‖un‖L2(0,T;L2(0,L)) = 1 (if not, we normalize. This is due to
the linearity of the equation) and

1
n
> ‖un

x(·, 0)‖2
L2(0,T) +

∫ T

0

∫ L

0
a(x)|un(t, x)|2 dxdt

Then, as n goes to∞

un
x(t, 0)→ 0, in L2(0,T), aun(t, x)→ 0, in L2(0,T,L2(0,L))
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Linear System on a critical case
We pass to the limit (see the notes) in the equation

un
t + un

x + un
xxx + aun = 0.

and get a solution u of

ut + ux + uxxx = 0.

with
a(x)u(t, x) = 0 ∀x ∈ [0,L], ∀t ∈ (0,T)

From the properties of the damping (active in O), we get

u(t, x) = 0, ∀x ∈ O, ∀t ∈ (0,T).

A unique continuation principle (Holmgrem’s Theorem) implies that u = 0,
which contradicts the fact that

‖u‖L2(0,T;L2(0,L)) = 1
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Stabilization of the Linear System

ut + ux + uxxx + au = 0,
u(t, 0) = u(t,L) = ux(t,L) = 0,
u(0, ·) = u0(·),

Theorem (Perla-Vasconcellos-Zuazua 02)
Let L > 0 and a = a(x) as before. There exist C, ω > 0:

‖u(t, ·)‖L2(0,L) ≤ Ce−ωt‖u0‖L2(0,L), ∀t ≥ 0

for any solution of linear KdV with u0 ∈ L2(0,L).
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Nonlinear System
The solution u of

ut + ux + uxxx + au + uux = 0,
u(t, 0) = u(t,L) = ux(t,L) = 0,
u(0, ·) = u0(·),

can be written as u = u1 + u2 where u1 is the solution of

u1
t + u1

x + u1
xxx + au1 = 0,

u1(t, 0) = u1(t,L) = u1
x(t,L) = 0,

u1(0, x) = u0

and u2 is the solution of

u2
t + u2

x + u2
xxx + au2 = −uux,

u2(t, 0) = u2(t,L) = u2
x(t,L) = 0,

u2(0, x) = 0
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Nonlinear System
From some linear estimates of the system

‖u(t, ·)‖L2(0,L) ≤ ‖u1(t, ·)‖L2(0,L) + ‖u2(t, ·)‖L2(0,L)

≤ γ‖u0‖L2(0,L) + C‖uux‖L1(0,T;L2(0,L))

≤ γ‖u0‖L2(0,L) + C‖u‖2
L2(0,T;H1(0,L))

where γ < 1.
Here we need a nonlinear estimate∫ L

0
(ut + ux + uxxx + au + uux)xu dx = 0

we get

3
∫ T

0

∫ L

0
|ux|2dxdt +

∫ L

0
x|u(T, ·)|2dx + 2

∫ T

0

∫ L

0
xa|u|2dxdt

=

∫ T

0

∫ L

0
|u|2dxdt +

∫ L

0
x|u0|2dx +

2
3

∫ T

0

∫ L

0
|u|3dxdt
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Nonlinear System

We obtain

‖u‖2
L2(0,T;H1(0,L)) ≤

(3T + L)

3
‖u0‖2

L2(0,L) +
2
9

∫ T

0

∫ L

0
|u|3dxdt

As u ∈ L2(0,T; H1(0,L)) and H1(0,L) embeds into C([0,L]):∫ T

0

∫ L

0
|u|3dxdt ≤

∫ T

0
‖u‖L∞(0,L)

∫ L

0
|u|2dxdt

≤ C
∫ T

0
‖u‖H1(0,L)

∫ L

0
|u|2dxdt

≤ C‖u0‖2
L2(0,L)

∫ T

0
‖u‖H1(0,L)dt

≤ CT1/2‖u0‖2
L2(0,L)‖u‖L2(0,T;H1(0,L))
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Nonlinear System

We obtain

‖u‖2
L2(0,T;H1(0,L)) ≤

(8T + 2L)

3
‖u0‖2

L2(0,L) +
TC
27
‖u0‖4

L2(0,L)

which gives the existence of C > 0 such that

‖u(t, ·)‖L2(0,L) ≤ ‖u0‖L2(0,L)

{
γ + C‖u0‖L2(0,L) + C‖u0‖3

L2(0,L)

}
Given ε > 0 small enough such that (γ + ε) < 1, we can take r small enough
so that r + r3 < ε

C , in order to have

‖u(t, ·)‖L2(0,L) ≤ (γ + ε)‖u0‖L2(0,L)

The rest of the proof runs as before thanks to the fact that (γ + ε) < 1.
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Stabilization of the Nonlinear System

We have introduced an internal damping mechanism in order to be sure the
energy of the system decreases to zero in an exponential way. We have proved
a local result for the KdV equation.

ut + ux + uxxx + au + uux = 0,
u(t, 0) = u(t,L) = ux(t,L) = 0,
u(0, ·) = u0(·),

Theorem (Perla-Vasconcellos-Zuazua 02)
Let L > 0 and a = a(x) as before. There exist C, r, ω > 0:

‖u(t, ·)‖L2(0,L) ≤ Ce−ωt‖u0‖L2(0,L), ∀t ≥ 0

for any solution of KdV with ‖u0‖L2(0,L) ≤ r.
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Remark

Similar results have been proven recently for coupled systems of KdV
equations. See [Capistrano-Fihlo, Komornik, and Pazoto. 2014],
[Pazoto, Souza, 2014 and 2013], Massarolo, Perla-Mezala, and Pazoto,
2011], [Nina, Pazoto, and Rosier, 2011], [Pazoto, Rosier, 2010].

That could seem strange, but as mentioned before, a similar phenomena
appears when studying the controllability of the system from the right
Neumann boundary condition. The linear system is controllable if and
only if L is not critical but in despite of that the nonlinear system is
always controllable.
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Saturated inputs
What is saturation for a function? Different choices

satloc(f )(x) =


−u0 if f (x) ≤ −u0,
f (x) if − u0 ≤ f (x) ≤ u0,

u0 if f (x) ≥ u0,

sat2(f )(x) =

{
f (x) if ‖f (x)‖L2(0,L) ≤ u0,

f (x)u0
‖f (x)‖L2(0,L)

if ‖f (x)‖L2(0,L) ≥ u0.

Figure: x ∈ [0, π]. Red: sat2(cos)(x) and u0 = 0.5, Blue: satloc(cos)(x) and
u0 = 0.5, Dotted lines: cos(x).
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Saturated inputs

Let us consider the KdV equation controlled by a saturated distributed control
as follows 

yt + yx + yxxx + yyx + sat(ay) = 0,
y(t, 0) = y(t,L) = yx(t,L) = 0,
y(0, x) = y0(x),

where sat is any of previous saturations, and a is a localized function as in
previous sections.

Theorem (Marx, EC, Prieur, Andrieu, under review)
There exist a positive value µ? and a class K function α0 : R≥0 → R≥0 such
that for any y0 ∈ L2(0,L), the mild solution y of saturated-KdV satisfies

‖y(t, .)‖L2(0,L) ≤ α0(‖y0‖L2(0,L))e−µ
?t, ∀t ≥ 0. (4)

E. Cerpa (UTFSM) PDE Control Methods 33 / 103



Simulations: sat2, u0 = 0.5, ω = [0,L], a = 1

Figure: Solution with no sat. Figure: Saturated solution

Figure: Saturated control

Figure: Blue: Saturated energy. Red:
Theoretical energy. Dotted line:
Energy with no sat
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Simulations: satloc, u0 = 0.5, ω = [L
3 ,

2L
3 ], a = 1

Figure: Solution with no sat. Figure: Saturated solution

Figure: Saturated control

Figure: Blue: Saturated energy. Dotted
line: Energy with no sat
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Boundary Control
from the right
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Boundary Control from the right

In all this part the equation is linear.

Let L > 0 be fixed. Let us consider the following linear control system for the
KdV equation with homogeneous Dirichlet boundary conditions

ut + ux + uxxx = 0,
u(t, 0) = u(t,L) = 0,
ux(t,L) = Fω(t)

State is u(t, ·) : [0,L]→ R. Control is Fω(t) ∈ R.
We want to design a feedback control law

Fω = Fω(u)
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Result

We will use a Gramian-based approach in order to build a feedback law to
show the following.

Theorem (EC-Crépeau 09)
Let ω > 0 and L /∈ N . The closed-loop system

ut + ux + uxxx = 0, u(0, ·) = u0,
u(t, 0) = u(t,L) = 0, ux(t,L) = Fω(u(t)),

is globally well posed in H1
0(0,L). Moreover, the solutions decay to zero with

an exponential rate of 2ω, i.e.,

∃C > 0, ∀u0 ∈ H1
0(0,L), ‖u(t, ·)‖H1

0
≤ Ce−2ωt‖u0‖H1

0
.
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Finite Dimensional Control

ẋ = Ax + Bu, x(0) = x0,

with n,m ∈ N, A ∈ Mn×n(R), B ∈ Mn×m(R). The state is x(t) ∈ Rn and the
control is u(t) ∈ Rm. The state x0 is the initial data. The solution is given by

x(t) = eAtx0 +

∫ t

0
e(t−s)ABu(s)ds

The system is controllable in time T if and only if the Gramian matrix

C =

∫ T

0
e(T−t)ABB∗e(T−t)A∗dt

is invertible. For instance, if C is invertible, then the system is driven from x0
to x1 in time T (for any x0, x1 ∈ Rn) by applying the control

u(s) = B∗e(T−s)A∗C−1(x1 − eTAx0), ∀s ∈ [0,T].
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Gramian-based stabilization
Let us see how the Gramian matrix can also be used to stabilize the system.
Let us suppose the system is controlable. Thus,

CT = e−TACe−TA∗ =

∫ T

0
e−tABB∗e−tA∗dt

is invertible and we can define the feedback control

u(t) = −B∗C−1
T x(t).

By applying a Lyapunov method, it can be easily proven the following (see
the notes).

Theorem
∃M, µ > 0 such that solutions of ẋ(t) = (A− BB∗C−1

T )x(t), satisfies

|x(t)| ≤ Me−µt|x(0)|, ∀t ≥ 0.
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Rapid Stabilization
Now, as we want to impose an exponential decay rate equals to ω, we make
the change y = eωtx. The system becomes

ẏ = (A + ωId)y + Bv

(Id identity matrix) and the control is given by v = eωtu. The controllability of
this system is equivalent to the controllability of ẋ = Ax + Bu. Then, the
feedback control

v(t) = −B∗
(∫ T

0
e−t(A+ωId)BB∗e−t(A∗+ωId)dt

)−1

y(t).

gives the exponential decay of y. However, we do not know exactly the rate µ.
By coming back to x, we get

|x(t)| ≤ Me−ωt|x(0)|, ∀t ≥ 0

which is what we were looking for.
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Rapid stabilization
An improvement of this method: let us consider the matrix

Cω,∞ =

∫ ∞
0

e−t(A+ωId)BB∗e−t(A∗+ωId)dt

We obtain
(A + ωId)Cω,∞ + Cω,∞(A + ωId)∗ = BB∗

and then if we use the control

u(t) = −B∗C−1
ω,∞x(t)

in ẋ = Ax + Bu, then we obtain

(A− BB∗C−1
ω,∞) = Cω,∞(−A∗ − 2ωId)C−1

ω,∞

In particular, if A∗ = −A, then the eigenvalues of system
ẋ = (A− BB∗C−1

ω,∞)x are exactly the eigenvalues of A shifted 2ω units to the
left in the complex plane:

|x(t)| ≤ Me−2ωt|x(0)|, ∀t ≥ 0.
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Infinite Dimensional Case

ẏ(t) = Ay(t) + Bκ(t),
y(0) = y0.

State y(t) in a Hilbert space Y; Control κ(t) in a Hilbert space U; A is a
skew-adjoint operator (i.e. A∗ = −A) in Y; B is an unbounded operator from
U to Y; B∗ is called observation operator.

We want to define an invertible operator Λω : Y → Y

Λω ≈
∫ ∞

0
e−t(A+ωId)BB∗e−t(A∗+ωId)dt

To do so, we use the cuadratic expression: ∀x, z ∈ Y,

(Λωx, z)Y =

∫ ∞
0

(
B∗e−τ(A+ωI)∗x,B∗e−τ(A+ωI)∗z

)
U

dτ
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Infinite Dimensional Case

State y(t) in a Hilbert space Y; Control κ(t) in a Hilbert space U; A is a
skew-adjoint operator (i.e. A∗ = −A) in Y and B is an unbounded operator
from U to Y .

(H1) A is the infinitesimal generator of a strongly continuous group on Y .

(H2) The operator B : U → D(A)′ is linear continuous.

(H3) Regularity property. ∀T > 0, ∃CT > 0:∫ T

0
‖B∗e−tA∗y‖2

Udt ≤ CT‖y‖2
Y , ∀ y ∈ D(A∗).

(H4) Observability inequality. ∃T, cT > 0:∫ T

0
‖B∗e−tA∗y‖2

Udt ≥ cT‖y‖2
Y , ∀ y ∈ D(A∗).
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Infinite Dimensional Case

Theorem (Urquiza 05)
Consider A and B such that (H1)-(H4) hold. For any ω > 0:

(i) The symmetric positive operator Λω defined above is coercive and an
isomorphism on Y.

(ii) Let Fω := −B∗Λ−1
ω . The operator A + BFω is the infinitesimal generator

of a strongly continuous semigroup on Y.

(iii) The closed-loop system with feedback law Fω(y(t)) is exponentially
stable with a decay rate 2ω:

∃C > 0, ∀y0 ∈ Y, ‖et(A+BFω)y0‖Y ≤ Ce−2ωt‖y0‖Y .
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Application to our Problem

(H1): Operator A is the infinitesimal generator of a strongly continuous group
on Y , A∗ = −A.

It holds if we take as control, the function v defined by

v(t) = F(t)− yx(t, 0).

Hence our system becomes symmetric with respect to the space variable

ut + ux + uxxx = 0,
u(t, 0) = u(t,L) = 0,
ux(t,L)− ux(t, 0) = v(t).
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Application to our Problem

We can rewrite latter system in the abstract form by defining U := L2(0,T),
Y := L2(0,L) and

D(A) :=
{

w ∈ H3(0,L); w(0) = w(L) = 0,w′(0) = w′(L)
}
,

Aw := −w′ − w′′′,

B : s ∈ R 7−→ Ls ∈ D(A∗)′,

Ls : z ∈ D(A∗) 7−→ szx(L) ∈ R.

It is not difficult to see that A∗ = −A and that

(Aw,w)L2(0,L) = 0, ∀w ∈ D(A).

Hence, from classical semigroup results, one sees that the operator A satisfies
(H1). We also see that (H2) holds for the operator B.
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Application to our Problem
Hypothesis (H3) and (H4) are more delicate to show. As our operator B stands
for a boundary control, we will see that assumption (H3) is a sharp trace
regularity. Concerning (H4), it is an observability inequality.

Observation operator

B∗ : w ∈ D(A∗) 7−→ w′(L) ∈ R

and then we have to show ∃ cT ,CT > 0, ∀ z0 ∈ L2(0,T),

cT‖z0‖2
L2(0,T) ≤

∫ T

0
|zx(t,L)|2dt ≤ CT‖z0‖2

L2(0,T)

where z is the solution of{
zt + zx + zxxx = 0, z(0, ·) = z0,
z(t, 0) = z(t,L) = 0, zx(t,L)− zx(t, 0) = 0,
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Testing Hypothesis

cT‖z0‖2
L2(0,T) ≤

∫ T

0
|zx(t,L)|2dt ≤ CT‖z0‖2

L2(0,T)

where {
zt + zx + zxxx = 0, z(0, ·) = z0,
z(t, 0) = z(t,L) = 0, zx(t,L)− zx(t, 0) = 0.

We know that {φk}k∈Z where{
−φ′ − φ′′′ = iλφ,
φ(0) = 0, φ(L) = 0, φ′(0) = φ′(L).

form a basis of L2(0,L). Thus, for any f ∈ L2(0,L) there exists a unique
sequence {fk}k∈Z with

∑
k∈Z |fk|2 <∞ such that

f =
∑
k∈Z

fkφk and ‖f‖L2(0,L) =
(∑

k∈Z
|fk|2

)1/2
.

E. Cerpa (UTFSM) PDE Control Methods 49 / 103



Testing Hypothesis

cT‖z0‖2
L2(0,T) ≤

∫ T

0
|zx(t,L)|2dt ≤ CT‖z0‖2

L2(0,T)

If z0 =
∑

k∈Z zk
0φk(x), then the solution of{
zt + zx + zxxx = 0, z(0, ·) = z0,
z(t, 0) = z(t,L) = 0, zx(t,L)− zx(t, 0) = 0,

is given by

z(t, x) =
∑
k∈Z

eiλktzk
0φk(x)
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Testing Hypothesis

As
z(t, x) =

∑
k∈Z

eiλktzk
0φk(x)

one has at least formally,

zx(t,L) =
∑
k∈Z

eiλkt zk
0φ
′
k(L)︸ ︷︷ ︸
γk

It can be proven that
φ′k(L) ≈ k, as |k| >> 1.

If z0 ∈ L2(0,L), then
∑

k∈Z |zk
0|2 <∞.

If z0 ∈ H1(0,L), then
∑

k∈Z(1 + |k|)2|zk
0|2 <∞.
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Testing Hypothesis

Lemma (Ingham’s inequality)
Let T > 0. Let {βk}k∈Z ⊂ R be a sequence of pairwise distinct real numbers
such that

lim
|k|→+∞

βk+1 − βk = +∞.

Then there exist two strictly positive constants C1 and C2 such that for any
sequence {γk}k∈Z satisfying

∑
k∈Z γ

2
k <∞, the series f (t) =

∑
k∈Z γkeiβkt

converges in L2(0,T) and satisfies

C1

∑
k∈Z

γ2
k ≤

∫ T

0
|f (t)|2dt ≤ C2

∑
k∈Z

γ2
k .

In our case we take

βk := λk, γk := zk
0φ
′
k(L), f (t) :=

∑
k∈Z

eiλktzk
0φ
′
k(L)
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Testing Hypothesis

βk := λk, γk := zk
0φ
′
k(L), f (t) :=

∑
k∈Z

eiλktzk
0φ
′
k(L)

Applying Ingham’s inequality

cT

∑
k∈Z
|zk

0φ
′
k(L)|2 ≤

∫ T

0
|zx(t,L)|2dt ≤ CT

∑
k∈Z
|zk

0φ
′
k(L)|2

In order to put the term
∑

k∈Z(1 + |k|)2|zk
0|2 by above and below, we have to

ask the condition
φ′k(L) 6= 0, ∀k ∈ Z

Theorem
This condition holds if and only if L /∈ N .
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Result

(
(Λωx, z)Y =

∫ ∞
0

(
B∗e−τ(A+ωI)∗x,B∗e−τ(A+ωI)∗z

)
U

dτ
)

We first define, for any q0 and ψ0 ∈ H1
0(0,L), the bilinear form

aω(q0, ψ0) :=

∫ ∞
0

e−2ωτqx(τ,L)ψx(τ,L)dτ,

where q and ψ are the respective solutions of{
qτ + qx + qxxx = 0, q(0, .) = q0,
q(τ, 0) = q(τ,L) = 0, qx(τ,L)− qx(τ, 0) = 0

and {
ψτ + ψx + ψxxx = 0, ψ(0, .) = ψ0,
ψ(τ, 0) = ψ(τ,L) = 0, ψx(τ,L)− ψx(τ, 0) = 0.
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Result (
(Λωx, z)Y =

∫ ∞
0

(
B∗e−τ(A+ωI)∗x,B∗e−τ(A+ωI)∗z

)
U

dτ
)

We then define the operator Λω : H1
0(0,L) −→ H−1(0,L) assumed to satisfy

< Λωq0, ψ0 >H−1,H1
0
= aω(q0, ψ0), ∀q0, ψ0 ∈ H1

0 .

Therefore we define Λ−1
ω z as q0 solution of

Λωq0 = z

that is equivalent to

< Λωq0, ψ0 >H−1,H1
0
=< z, ψ0 >H−1,H1

0
∀ψ0 ∈ H1

0

or to the following Lax-Milgram problem

aω(q0, ψ0) =< z, ψ0 >H−1,H1
0
∀ψ0 ∈ H1

0
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Feedback law

Finally, we define Fω(z) = −B∗Λ−1
ω z

Fω : H1
0(0,L) −→ R

z −→ Fω(z) := −q′0(L),

where q0 is the solution

aω(q0, ψ0) =< z, ψ0 >H−1,H1
0
, ∀ψ0 ∈ H1

0 .

Notice that q0 ∈ H1
0(0,L) is characterized as the minimum of

J(q0) :=
1
2

aω(q0, q0)− < z, q0 >H−1,H1

in H1
0(0,L).
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Result

As hypothesis (H1)-(H4) are satisfied under the condition L /∈ N , the method
can be applied to get{

ut + ux + uxxx = 0, u(0, .) = y0,
u(t, 0) = u(t,L) = 0, ux(t,L)− ux(t, 0) = Fω(u(t)),

is globally well posed in H1
0(0,L). Moreover, the solutions decay to zero with

an exponential rate of 2ω, i.e.,

∃C > 0, ∀u0 ∈ H1
0 , ‖u(t, ·)‖H1

0
≤ Ce−2ωt‖u0‖H1

0
.
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Numerical Simulations

Evolution of the solution when ω = 2 (left) and ω = 3 (right).
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Numerical Simulations

Time-evolution of the norm ‖u‖H1 compared with e−ωt‖u0‖H1 for ω = 2 and
ω = 3.
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Remarks

By using a finite-dimensional method based on the Gramian matrix we
have design some feedback controls which make the linear KdV
equation stable with an exponential decay rate as large as desired.

This method can not be applied if the underlying spatial operator is not
skew-adjoint.

For that reason, we consider a first order boundary condition on
(ux(t,L)− ux(t, 0) instead of ux(t,L).
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Remarks

A major difficulty in order to consider the nonlinear KdV equation is to deal
with the technical point of well-posedness of the equation with the convenient
boundary conditions. Is the system

ut + ux + uxxx + uux = 0,
u(t, 0) = u(t,L) = 0,
ux(t,L)− ux(t, 0) = 0,

well-posed in L2(0,L) or H1(0,L)?

With this boundary conditions there is no Kato smoothing effect allowing us
to deal with the nonlinearity uux in the well-posedness framework.
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Remarks

In [Coron and Lu, 2014] the authors apply a new design strategy (similar to
Backstepping method) in order to define a control law acting on the right-hand
side of the interval. They do not need to work with a skew-adjoint operator
and therefore they obtain stabilization results for the nonlinear KdV equation


ut + ux + uxxx + uux = 0,
u(t, 0) = u(t,L) = 0,
ux(t,L) = K(u(t, ·)).

Of course, they have to avoid the critical cases because their method is based
on a linearization procedure.
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Boundary Control
from the left
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Boundary Control from the left

Given L > 0, the linear control system is

ut + ux + uxxx = 0, u(0, ·) = u0,
u(t, 0) = Kω, u(t,L) = 0, ux(t,L) = 0,

and the nonlinear one is

ut + ux + uxxx + uux = 0, u(0, ·) = u0,
u(t, 0) = Kω, u(t,L) = 0, ux(t,L) = 0.
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Boundary Control from the left
We use the Backstepping method to get

Theorem (EC-Coron 13)
For any ω > 0, there exist a feedback control law Kω = Kω(u(t, ·)) and
D > 0 such that

‖u(t, ·)‖L2(0,L) ≤ De−ωt‖u0‖L2(0,L), ∀t ≥ 0,

for any solution of linear KdV.

Theorem (EC-Coron 13)
For any ω > 0, there exist a feedback control law Kω = Kω(u(t, ·)), r > 0 and
D > 0 such that

‖u(t, ·)‖L2(0,L) ≤ De−ωt‖u0‖L2(0,L), ∀t ≥ 0,

for any solution of nonlinear KdV satisfiying ‖u0‖L2(0,L) ≤ r.
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Boundary Control from the left

In both cases the feedback law Kω is explicitly defined as follows

Kω(u(t, ·)) =

∫ L

0
k(0, y)u(t, y)dy,

where the function k = k(x, y) will be characterized as the solution of a given
partial differential equation depending on ω.

Unlike the cases of the wave and the heat equation, we have not found a
closed formula for the gain k = k(x, y).
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Control Design
Let us consider the linearized system around the origin

ut + ux + uxxx = 0,
u(t, 0) = Kω, u(t,L) = 0, ux(t,L) = 0.

(5)

Given a positive parameter ω, we look for a transformation
Π : L2(0,L)→ L2(0,L) defined by

v(x) = Π(u(x)) := u(x)−
∫ L

x
k(x, y)u(y)dy,

such that a trajectory u = u(t, x), solution of (5) with

Kω(t) =

∫ L

0
k(0, y)u(t, y)dy,

is map into a trajectory v = v(t, x), solution of the linear system

vt + vx + vxxx + ωv = 0,
v(t, 0) = 0, v(t,L) = 0 vx(t,L) = 0.
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Target System

Take a look at the target system

vt + vx + vxxx + ωv = 0,
v(t, 0) = 0, v(t,L) = 0 vx(t,L) = 0.

We have for any t ≥ 0

d
dt

∫ L

0
|v(t, x)|2dx = −|vx(t, 0)|2 − 2ω

∫ L

0
|v(t, x)|2dx

≤ −2ω
∫ L

0
|v(t, x)|2dx

and therefore we easily obtain for v = v(t, x) the exponential decay at rate ω

‖v(t, ·)‖L2(0,L) ≤ e−ωt‖v(0, ·)‖L2(0,L), ∀t ≥ 0.
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Target System

Is this decay rate sharp? Let us notice that the eigenvalues of target system

vt + vx + vxxx + ωv = 0,
v(t, 0) = 0, v(t,L) = 0 vx(t,L) = 0.

are the eigenvalues of

vt + vx + vxxx = 0,
v(t, 0) = 0, v(t,L) = 0, vx(t,L) = 0,

shifted to the left ω units. Thus, we are lead to study the eigenvalues σ of{
−φ′(x)− φ′′′(x) = σφ(x),
φ(0) = 0, φ(L) = 0, φ′(L) = 0.
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Eigenvalues
Surprisingly, the eigenvalues behavior depends on the length of the interval.

-6000 -5000 -4000 -3000 -2000 -1000 0
-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

HaL
In case (a), L = 1 (non-critical) and the first eigenvalue σ1 is approximately
−72. The system behaves like a dissipative one.
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Eigenvalues

-20 -15 -10 -5 0
-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

HbL
In (b), L = 2π (critical) and we have σ1 = 0. The system has one
conservative component given by the eigenfunction φ(x) = 1− cos(x).

E. Cerpa (UTFSM) PDE Control Methods 71 / 103



Eigenvalues

-5 -4 -3 -2 -1 0
-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

HcL
In (c), L = 2π

√
7/3 and the first two eigenvalues are imaginary numbers

σ1 = 0.2i and σ2 = −0.2i.

This examples show the different behaviors that the target system can have
and the important role played by the parameter ω in our design.
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Kernel function
Let us find the kernel k = k(x, y) such that

v(x) = u(x)−
∫ L

x
k(x, y)u(y)dy

is sent into the target. For instance,

vt(t, x) = ut(t, x)−
∫ L

x
ut(t, y)k(x, y)dy

= ut(t, x) +

∫ L

x
(uy(t, y) + uyyy(t, y))k(x, y)dy

= ut(t, x)−
∫ L

x
u(t, y) (ky(x, y) + kyyy(x, y)) dy

− k(x, x)(u(t, x) + uxx(t, x))
+ ky(x, x)ux(t, x)− kyy(x, x)u(t, x) + k(x,L)u(t,L)
+ k(x,L)uxx(t,L)− ky(x,L)ux(t,L) + kyy(x,L)u(t,L)
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Kernel function

v(x) = u(x)−
∫ L

x
k(x, y)u(y)dy,

vx(t, x) = ux(t, x) + k(x, x)u(t, x)−
∫ L

x
kx(x, y)u(t, y)dy,

vxx(t, x) = uxx(t, x) + u(t, x)
d
dx

k(x, x) + k(x, x)ux(t, x)

+ kx(x, x)u(t, x)−
∫ L

x kxx(x, y)u(t, y)dy,

and

vxxx(t, x) = uxxx(t, x) + u(t, x)
d2

dx2 k(x, x) + 2ux(t, x)
d
dx

k(x, x)

+ k(x, x)uxx(t, x) + u(t, x)
d
dx

kx(x, x) + kx(x, x)ux(t, x)

+ kxx(x, x)u(t, x)−
∫ L

x
kxxx(x, y)u(t, y)dy.
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Kernel function

Thus, given ω ∈ R we have

vt(t, x) + vx(t, x) + vxxx(t, x) + ωv(t, x) =

−
∫ L

x
u(t, y)

(
kxxx(x, y) + kx(x, y) + kyyy(x, y) + ky(x, y) + ωk(x, y)

)
dy

+ k(x,L)uxx(t,L) + ux(t, x)
(

3
d
dx

k(x, x)
)

+ u(t, x)
(
ω + kxx(x, x)− kyy(x, x) +

d
dx

kx(x, x) +
d2

dx2 k(x, x)
)
.
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Kernel function

Thus, we obtain that the kernel
k = k(x, y) defined in the triangle

T = {(x, y)
/

x ∈ [0,L], y ∈ [x,L]}

must satisfy one third-order PDE
with 3 boundary conditions

kxxx(x, y) + kyyy(x, y) + kx(x, y) + ky(x, y) = −ωk(x, y)
k(x,L) = 0
k(x, x) = 0

kx(x, x) =
ω

3
(L− x)
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Kernel function

Let us make the following change of variable

t = y− x, s = x + y,

and define
G(s, t) := k(x, y)

We have
k(x, y) = G(x + y, y− x)

and therefore

kx = Gs − Gt, ky = Gs + Gt,

kxx = Gss − 2Gst + Gtt, kyy = Gss + 2Gst + Gtt,

kxxx = Gsss − 3Gsst + 3Gstt − Gttt,

kyyy = Gsss + 3Gsst + 3Gstt + Gttt
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Kernel function

Now, the function G = G(s, t),
defined in

T0 = {(s, t)
/

t ∈ [0,L], s ∈ [t, 2L−t]}

satisfies

6Gtts(s, t) + 2Gsss(s, t) + 2Gs(s, t) = −ωG(s, t), in T0,
G(s, 2L− s) = 0, in [L, 2L],

G(s, 0) = 0, in [0, 2L],

Gt(s, 0) =
ω

6
(s− 2L), in [0, 2L].
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Kernel function

Let us transform this system into an integral one.

We write the equation in variables (η, ξ), integrate ξ in (0, τ) and use
that 6Gts(η, 0) = ω.

We integrate τ in (0, t) and use that Gs(η, 0) = 0.

We integrate η in (s, 2L− t) and use that G(2L− t, t) = 0.

Thus, we can write the following integral form for G = G(s, t)

G(s, t) = −ωt
6

(2L− t − s)

+
1
6

∫ 2L−t

s

∫ t

0

∫ τ

0

(
2Gsss(η, ξ) + 2Gs(η, ξ) + ωG(η, ξ)

)
dξdτdη.
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Kernel function
To prove that such a function G = G(s, t) exists, we use the method of
successive approximations. We take as an initial guess

G1(s, t) = −ωt
6

(2L− t − s)

and define the recursive formula as follows,

Gn+1(s, t) =
1
6

∫ 2L−t

s

∫ t

0

∫ τ

0

(
2Gn

sss(η, ξ)

+ 2Gn
s (η, ξ) + ωGn(η, ξ)

)
dξdτdη.

Performing some computations, we get for instance

G2(s, t) =
1

108

{
t3(ω − ω2L +

ω2t
4
)(

2L− t − s
)

+
t3ω2

4
[
(2L− t)2 − s2]},
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Kernel function

... and more generally the following formula

Gk(s, t) =

k∑
i=1

(
ai

kt2k−1 + bi
kt2k)[(2L− t)i − si],

where the coefficients satisfy bk
k = 0 and more importantly, there exist

positive constants M,B such that, for any k ≥ 1 and any (s, t) ∈ T0

∣∣Gk(s, t)
∣∣ ≤ M

Bk

(2k)!
(t2k−1 + t2k).

This implies that the series
∑∞

n=1 Gn(s, t) is uniformly convergent in T0.
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Kernel function
We get a solution of our integral equation. Indeed,

G = G1 +

∞∑
n=1

Gn+1

= G1 +
1
6

∞∑
n=1

∫ 2L−t

s

∫ t

0

∫ τ

0

(
2Gn

sss(η, ξ)

+ 2Gn
s (η, ξ) + ωGn(η, ξ)

)
dξdτdη

= G1 +
1
6

∫ 2L−t

s

∫ t

0

∫ τ

0

(
2
∞∑

n=1

Gn
sss(η, ξ)

+ 2
∞∑

n=1

Gn
s (η, ξ) + ω

∞∑
n=1

Gn(η, ξ)
)

dξdτdη

= G1 +
1
6

∫ 2L−t

s

∫ t

0

∫ τ

0

(
2Gsss(η, ξ) + 2Gs(η, ξ) + ωG(η, ξ)

)
dξdτdη.
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Kernel function

We plot the gain kernel k(0, y) as a function of y ∈ [0,L] for the length (a)
L = 1 (non-critical). ω = 1.
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Kernel function

We plot the gain kernel k(0, y) as a function of y ∈ [0,L] for the length (b)
L = 2π (critical). ω = 1.
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Kernel function

We plot the gain kernel k(0, y) as a function of y ∈ [0,L] for the length (c)
L = 2π

√
7/3 (critical). ω = 1.
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Stability Linear System
We know that the target system is exponentially stable. In order to get the
same conclusion for the original linear system the method we are applying
uses the inverse transformation Π−1. For that, we introduce a kernel function
`(x, y) which satisfies

`xxx(x, y) + `yyy(x, y) + `x(x, y) + `y(x, y) = ω`(x, y),
`(x,L) = 0,
`(x, x) = 0,
`x(x, x) =

ω

3
(L− x)

The existence and uniqueness of such a kernel ` = `(x, y) are proven in the
same way than for the kernel k = k(x, y) previously. Once we have defined
` = `(x, y), it is easy to see that the transformation Π−1 is characterized by

u(x) = Π−1(v(x)) := v(x) +

∫ L

x
`(x, y)v(y)dy.
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Stability Linear System

The operator Π : L2(0,L)→ L2(0,L), is continuous and consequently we
have the existence of a positive constant Dκ such that

‖Π(f )‖L2(0,L) ≤ Dκ‖f‖L2(0,L), ∀f ∈ L2(0,L).

The map Π−1 : L2(0,L)→ L2(0,L) is also continuous and therefore we get
the existence of a positive constant D` such that

‖Π−1(f )‖L2(0,L) ≤ D`‖f‖L2(0,L), ∀f ∈ L2(0,L).
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Stability Linear System

Given u0 ∈ L2(0,L), we define

v0(x) = Π(u0(x)) := u0(x)−
∫ L

x
k(x, y)u0(y)dy.

The solution of target system with initial condition v(0, x) = v0(x) satisfies

‖v(t, ·)‖L2(0,L) ≤ e−ωt‖v0(·)‖L2(0,L), ∀t ≥ 0.

Moreover, the solution of linear KdV is given by u(t, x) = Π−1(v(t, x)). Thus,

‖u(t, ·)‖L2(0,L) ≤ D`‖v(t, ·)‖L2(0,L) ≤ D`e−ωt‖v0(·)‖L2(0,L)

≤ D`Dke−ωt‖u0(·)‖L2(0,L)
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Nonlinear System

Let u = u(t, x) be a solution of the nonlinear KdV equation with the control
given by

K(t) =

∫ L

0
k(0, y)u(t, y)dy,

Then, v = Π(u(t, x)) satisfies

vt(t, x) + vx(t, x) + vxxx(t, x) + ωv(t, x) =

−
(

v(t, x) +

∫ L

x
`(x, y)v(t, y)dy

)(
vx(t, x) +

∫ L

x
`x(x, y)v(t, y)dy

)
with homogeneous boundary conditions

v(t, 0) = 0, v(t,L) = 0, vx(t,L) = 0.
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Nonlinear System

We multiply by v and integrate in (0,L) to obtain

d
dt

∫ L

0
|v(t, x)|2dx = −|vx(t, 0)|2

− 2ω
∫ L

0
|v(t, x)|2dx− 2

∫ L

0
v(t, x)F(t, x)dx

where the term F = F(t, x) is given by

F(t, x) = v(t, x)

∫ L

x
`x(x, y)v(t, y)dy + vx(t, x)

∫ L

x
`(x, y)v(t, y)dy

+

(∫ L

x
`(x, y)v(t, y)dy

)(∫ L

x
`x(x, y)v(t, y)dy

)
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Nonlinear System

We can prove that there exists a positive constant C = C(‖`‖C1(T )) such that

∣∣∣2 ∫ L

0
v(t, x)F(t, x)dx

∣∣∣ ≤ C
(∫ L

0
|v(t, x)|2

)3/2

and therefore, if there exists t0 ≥ 0 such that

‖v(t0, ·)‖L2(0,L) ≤
ω

C
,

then we obtain

d
dt

∫ L

0
|v(t, x)|2dx ≤ −ω

∫ L

0
|v(t, x)|2dx, ∀t ≥ t0.

E. Cerpa (UTFSM) PDE Control Methods 91 / 103



Nonlinear System

Thus, we get

Theorem (EC-Coron 2013)
For any ω > 0, there exist a feedback control law Kω = Kω(u(t, ·)), r > 0 and
D > 0 such that

‖u(t, ·)‖L2(0,L) ≤ De−ωt‖u0‖L2(0,L), ∀t ≥ 0,

for any solution of nonlinear KdV satisfiying ‖u0‖L2(0,L) ≤ r.
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Remarks

The backstepping method has been applied to build some boundary
feedback laws, which locally stabilize the Korteweg-de Vries equation
posed on a finite interval.

Our control acts on the Dirichlet boundary condition at the left hand side
of the interval where the system evolves.

The closed-loop system is proven to be locally exponentially stable with
a decay rate that can be chosen to be as large as we want.
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Remarks

Let us consider one or two control inputs at the right hand side

u(t, 0) = 0, u(t,L) = K1(t), ux(t,L) = K2(t)

To impose vt + vx + vxxx + ωv = 0, we have to vanish

k(x,L)uxx(t,L) + k(x,L)u(t,L) + kyy(x,L)u(t,L)− ky(x,L)ux(t,L)

As we do not have to our disposal uxx(t,L), the first term above arises the
condition k(x,L) = 0.

Moreover, to keep w(t, 0) = u(t, 0) = 0, we have to impose k(0, y) = 0 for
any y ∈ (0,L). We get four boundary restrictions (the other two are on
k(x, x)), the third order kernel equation satisfied by k = k(x, y) may become
overdetermined.
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Remarks
A natural idea to deal with controls at x = L is to use

v(t, x) = u(t, x)−
∫ x

0
k(x, y)u(t, y)dy,

If we do so, we deal now with the extra condition ky(x, 0) = 0 for any
x ∈ (0,L). This is due to the fact that when imposing vt + vx + vxxx + ωv = 0
on the target system, we get the extra term ux(t, 0)ky(x, 0) to be cancelled. As
previously, this fourth restriction may give an overdetermined kernel equation
for k = k(x, y).

Moreover, the existence of critical lengths when only one control is
considered at the right end-point suggests that either the existence of the
kernel or the invertibility of the corresponding map Π should fail for some
spatial domains.

As mentioned before, [Coron, Liu, 2014] solve this problem changing the
structure of the transformation.
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Output feedback control

GOAL: To design a controller u = K(y(t)) depending on some partial
measurements y(t) of the solution and not on the full state u = u(t, x).

What measurements?

The natural choice for the KdV equation should be y(t) = ux(t, 0).

Unfortunately, the system is not observable with this choice. (Critical values)

In this paper we consider the output given by

y(t) = uxx(t,L).

By using this measurement, we build an observer and apply the backstepping
method to design an output feedback control which exponentially stabilizes
the closed-loop system.
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Output feedback control
Lemma

Let us consider system
ut + ux + uxxx = 0,

u(t, 0) = κ(t), u(t,L) = 0, ux(t,L) = 0,

u(0, x) = u0(x),

where u0 ∈ H3(0,L) and κ(t) ∈ H1(0,T). Then
u ∈ C([0,T],H3(0,L)) ∩ L2(0,T; H4(0,L)) and uxx(·,L) ∈ C([0,T]).

Definition
Let us introduce the new transformation Πo defined by:

u(t, x) = Πo(w(t, x)) = w(t, x)−
∫ L

x
p(x, y)w(t, y)dy

where an appropriate kernel function p = p(x, y).
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Output feedback control

By following a classical approach, we construct the following observer:
ût + ûx + ûxxx + p(x,L)[y(t)− ûxx(t,L)] = 0,

û(t, 0) = κ(t), û(t,L) = ûx(t,L) = 0,

û(0, x) = 0,

(6)

y(t) = uxx(t,L).

Theorem (Marx-EC, 2014)
For any ω > 0, there exist a feedback law κ(t) := κ(û(t, x)), a function
p = p(x, y), and a constant C > 0 such that the coupled system (LKdV)-(6) is
globally exponentially stable with a decay rate equals to ω, i.e., for any
u0 ∈ H3(0,L) we have

‖u(t, ·)‖H3(0,L)+‖û(t, ·)‖L2(0,L) ≤ Ce−ωt‖u0‖H3(0,L)
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Output feedback control

By using the output feedback control

κ(t) =

∫ L

0
k(0, y)û(t, y)dy,

the transformations Π and Πo, we can see that (ũ = u− û, û) are mapped into
(w̃, ŵ) = (Π−1

o (ũ),Π(û)) solutions of the target system

ŵt + ŵx + ŵxxx + ωŵ =

−
{

p(x,L)−
∫ L

x
k(x, y)p(y,L)dy

}
w̃xx(t,L),

ŵ(0) = ŵ(L) = ŵx(L) = 0,

w̃t + w̃x + w̃xxx + ωw̃ = 0,

w̃(0) = w̃(L) = w̃x(L) = 0.
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Output feedback control

To prove the exponential stability of (w̃, ŵ), we use a Lyapunov argument

V(t) =
A
2

∫ L

0
|ŵ(t, x)|2 dx +

B
2

∫ L

0
|w̃(t, x)|2 dx +

B
2

∫ L

0
|w̃xxx(t, x)|2 dx,

with A,B to be chosen later.

In this way, by tuning A,B large enough, we get for any ε > 0 that

V̇(t) ≤ 2
(
− ω + ε

)
V(t),

which gives an exponential stability with decay rate as close to ω as we want.
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Output feedback control
Theorem (Marx-EC, 2014)
Let ω > 0 given. ∃C > 0, ∀u0 ∈ H3(0,L), the solution (u, û) of

ut + ux + uxxx = 0,

u(t, 0) =

∫ L

0
k(0, y)û(t, y)dy, u(t,L) = 0, ux(t,L) = 0,

u(0, x) = u0(x),
ût + ûx + ûxxx + p(x,L)[uxx(t,L)− ûxx(t,L)] = 0,

û(t, 0) =

∫ L

0
k(0, y)û(t, y)dy, û(t,L) = ûx(t,L) = 0,

û(0, x) = 0,

satisfies

‖u(t, ·)‖H3(0,L)+‖û(t, ·)‖L2(0,L) ≤ Ce−ωt‖u0‖H3(0,L)
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Simulations work fine, even for the nonlinear system

Good behavior of the observer:
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Left: Evolution of the L2-norm for the state (blue line) and the observer (red
line). Right: Time evolution of the L2-norm for the observation error u− û.
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Remarks

Not able to deal with the nonlinear system because regularity issues.

We are working with Swann Marx on other configurations inputs-outputs
to overcome this mathematical difficulty.

Other related works by [Tang and Krstic, 2013 and 2015], [Hassan,
2016].
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